首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract .1. Field studies were made of the benefits and costs of two feeding strategies in the genus Maculinea, whose final-instar larvae parasitise Myrmica ant colonies. Maculinea arion is an obligate predator of ant brood, whereas M. rebeli and M. alcon mimic ant larvae and are fed (like cuckoos) directly by the workers.
2. Samples of > 1500 Myrmica nests confirmed laboratory-based predictions that, by feeding at a lower trophic level, many (4.7-fold) more individuals of M. rebeli and M. alcon are supported per ant colony than M. arion.
3. Because of their efficient feeding, cuckoo species often occupied sites where their phytophagous early larval populations coincided to only a small extent (> 10%) with host Myrmica colonies, whereas all sites supporting M. arion had 50–100% of the phytophagous stages within foraging range of the host Myrmica species.
4. Greater host-specificity was identified as another consequence of cuckoo-feeding. The ecological cost of this is discussed .
5. The feeding of other Maculinea species had not been fully described: the data suggest that M. nausithous is a predator of ant brood and confirm that M. teleius is predacious .  相似文献   

2.
1. Phengaris butterflies are obligatory social parasites of Myrmica ants. Early research suggested that there is a different Myrmica host species for each of the five European Phengaris social parasites, but more recent studies have shown that this was an oversimplification. 2. The pattern of host ant specificity within a Phengaris teleius metapopulation from southern Poland is reported. A combination of studying the frequency distribution of Phengaris occurrence and morphometrics on adult butterflies were used to test whether use of different host species is reflected in larval development. 3. Phengaris teleius larvae were found to survive in colonies of four Myrmica species: M. scabrinodis, M. rubra, M. ruginodis, and M. rugulosa. Myrmica scabrinodis was the most abundant species under the host plant but the percentage of infested nests was similar to other host ant species at two sites and lower in comparison to nests of M. rubra and M. ruginodis at the other two sites. Morphometric measurements of adult butterflies reared by wild colonies of M. scabrinodis and M. ruginodis showed that wing size and number of wing spots were slightly greater for adults eclosing from nests of M. ruginodis. 4. Our results suggest that P. teleius in the populations studied is less specialised than previously suggested. The results are consistent with the hypothesis that P. teleius is expected to be the least specific of the European Phengaris species, as it has the largest and best defended fourth‐instar caterpillars and, as a predatory species, it spends less time in the central larval chambers of the host colonies. The fact that individuals reared by M. ruginodis had wider hind wings may suggest that P. teleius had better access to resources in M. ruginodis than in M. scabrinodis colonies.  相似文献   

3.
Summary The mortality of Maculinea arion caterpillars was measured in both laboratory and wild Myrmica nests, and found to be nearly 3 times higher in nests that had queen ants present. This is attributed to queen effect, which causes worker ants in nests with queens to attack large ant larvae (gynes) that would otherwise develop into new queens. Maculinea arion caterpillars mimic Myrmica larvae, and are usually attacked during the first 10 days after adoption, when they pass through the size range of ant gyne larvae. Caterpillars are also likely to be attacked during this period because their nethod of feeding brings them into close contact with the skins of large ant larvae, which contain gyne larval pheromones; older caterpillars are large enough to eat larvae without their exposed surfaces contacting the larval skin. In the wild, many caterpillars of Maculinea arion die in ant nests, and this has been shown in previous work to be the key factor that determines changes in their abundance from year to year. It is suggested that queen effect can be an important cause of these deaths, and one that particularly affects populations of butterflies that breed on sites with long-established plagioclimaxes of short turf rather than short-lived grass-land successions.  相似文献   

4.
5.
Final instar larvae of Maculinea rebeli Hirschke (Lepidoptera, Lycaenidae) are social parasites of Myrmica Latreille (Hymenoptera, Formicidae) nests. In the populations of the southern French Alps and Spanish Pyrenees, >95% adult M. rebeli emerge from colonies of Myrmica schencki Emery, despite >60% caterpillars being adopted by other Myrmica species (non‐hosts). However, in laboratory culture caterpillars can be reared successfully by many of the non‐host species. This contradiction, which has led some to question the existence of host specificity, has been explained by the lack of stress, particularly food stress, in laboratory cultures compared to wild conditions. Here, we report the results of an experiment that tested the survival of M. rebeli caterpillars that had been growing well, after being socially integrated into a series of host and non‐host cultures, and were then subjected to a 4‐week period of stress induced by a ‘starvation diet’ estimated to be less than the minimum for ant survival. Significantly more M. rebeli survived in M. schencki cultures than with any of the other Myrmica species (all died in most non‐host cultures). Under a starvation diet, caterpillars are killed and eaten along with dead workers – this never happens under an ample diet – rather than simply starving to death. It was noted that the proportion of young M. rebeli caterpillars that survived initial integration into an ant colony (including some M. schencki colonies) was a good predictor of subsequent survival under starvation conditions. We concluded that two key phases of host specificity exist in the life of this social parasite: initial integration, in which the caterpillar simply has to be accepted into a host society, followed by full integration, when a relatively high hierarchical status within the host society becomes essential for a caterpillar's survival during periods when the host colony is stressed, e.g., by food shortage. This experimental regime provides a useful bioassay for testing host specificity in other populations of Maculinea.  相似文献   

6.
Amphibian community structure in five tropical sites was studied using dominance, diversity, evenness indices, niche breadth and overlapping scores and association analysis. Ten species of amphibians with average density/ha varying from 8 to 49 in different sites were collected.Rana limnocharis andBufo melanostictus were respectively the dominant amphibia in paddy fields and other sites. Niche breadth scores indicatedRana limnocharis, Bufo melanostictus andRana cyanophlyctis as habitat generalists indicating wide tolerance to environmental gradients. Five frog speciesi.e. Rana tigerina, Microhyla ornata, Ramanella variegata, Uperedon systoma andPolypedates maculatus were considered habitat specialists indicating narrow tolerance to environmental gradients. Niche breadth scores were found to be a function of the cumulative relative abundance value of different species. The niches ofRana limnocharis andRana cyanophlyctis, Bufo melanostictus andBufo stomaticus showed maximum overlapping.Rana tigerina showed maximum niche overlapping withRana variegata in paddy fields and withMicrohyla ornata when all sites were taken together. The coefficient of community index was maximum between the paddy fields and minimum between the paddy fields and forest site.Rana tigerina occurred very sparsely and analysis of data indicates that its population are threatened and require conservation measure.  相似文献   

7.
This study was carried out to clarify the response of butterfly communities on forest degradation in the Gwangneung Forest, Korea. We monitored butterfly communities with varying degrees of human activities by conducting a line transect twice a month in 2011. A total of 70 species and 4676 individuals of butterflies were observed in four sites: natural forest (NR), two plantation forests, and the Korean National Arboretum (AR). The result on niche breadth, habitat breadth and habitat type of butterfly was not consistent with our predictions. Species richness of habitat type was only significantly different between NF and AR. Species diversity was significantly different among sites. Butterfly diversity associated with landscape patterns based on aerial photographs supported a mosaic concept. A forest management plan to conserve butterfly diversity in forests is necessary to maintain various habitats and to ensure that grasslands are protected.  相似文献   

8.
Phengaris (Maculinea) butterflies are social parasites of Myrmica ant colonies. Larvae of the parasite are adopted by the ant workers into the colonies. Apparently, chemical signals are used by Phengaris nausithous Bergsträsser larvae to mimic those of the host brood to be recognized by the ants. In the present study, chemical extracts of ant brood and butterfly larvae using four different solvents are tested in behavioural choice assays in search of compounds involved in the adoption process. Tetracosane is the main shared compound in all brood extracts of Myrmica rubra L. and in all larvae of P. nausithous. The attractiveness of tetracosane for M. rubra workers is confirmed by testing synthetic tetracosane in behavioural choice assays, suggesting that the adoption ritual may be initiated by tetracosane.  相似文献   

9.
Many species have already experienced distributional shifts due to changing environmental conditions, and analyzing past shifts can help us to understand the influence of environmental stressors on a species as well as to analyze the effectiveness of conservation strategies. We aimed to (1) quantify regional habitat associations of the California gnatcatcher (Polioptila californica ); (2) describe changes in environmental variables and gnatcatcher distributions through time; (3) identify environmental drivers associated with habitat suitability changes; and (4) relate habitat suitability changes through time to habitat conservation plans. Southern California's Western Riverside County (WRC ), an approximately 4,675 km2 conservation planning area. We assessed environmental correlates of distributional shifts of the federally threatened California gnatcatcher (hereafter, gnatcatcher) using partitioned Mahalanobis D 2 niche modeling for three time periods: 1980–1997, 1998–2003, and 2004–2012, corresponding to distinct periods in habitat conservation planning. Highly suitable gnatcatcher habitat was consistently warmer and drier and occurred at a lower elevation than less suitable habitat and consistently had more CSS , less agriculture, and less chaparral. However, its relationship to development changed among periods, mainly due to the rapid change in this variable. Likewise, other aspects of highly suitable habitat changed among time periods, which became cooler and higher in elevation. The gnatcatcher lost 11.7% and 40.6% of highly suitable habitat within WRC between 1980–1997 to 1998–2003, and 1998–2003 to 2004–2012, respectively. Unprotected landscapes lost relatively more suitable habitat (?64.3%) than protected landscapes (30.5%). Over the past four decades, suitable habitat loss within WRC , especially between the second and third time periods, was associated with temperature‐related factors coupled with landscape development across coastal sage scrub habitat; however, development appears to be driving change more rapidly than climate change. Our study demonstrates the importance of providing protected lands for potential suitable habitat in future scenarios.  相似文献   

10.
Due to local extinction, the endangered green carpenter bee (Xylocopa aerata) has a disjunct distribution in the southeast of Australia. The species relies on dead softwood from a small selection of plant species for making its nests. Habitat fragmentation, combined with deleterious fire events, is thought to have negatively impacted on nesting substrate availability and recolonisation chances. Here, we use MaxEnt algorithm to model both the current distribution and the effect of climate change scenarios on the distribution of both X. aerata and four plant species that provide most of its nesting substrate: Banksia integrifolia, B. marginata, Xanthorrhoea arborea and Xanthorrhoea semiplana subsp. tateana. The annual mean temperature is the strongest climatic predictor of the distribution of X. aerata and its host plants. The modelled distribution of the bee under current climatic conditions indicates that climatic factors are unlikely to cause local extinctions. In all future scenarios, suitable areas for X. aerata and each of its nesting hosts are expected to contract towards the southeast of mainland Australia. The suitability of Kangaroo Island for the bee and its current local current host species is maintained in all scenarios, while Tasmania will become increasingly suitable for all species. The Grampians National Park in western Victoria, where the bee species were last seen outside of its current range (in the 1930s), is predicted to remain suitable for X. aerata and several host plants under all scenarios. Therefore, this relatively large area of native vegetation may be a good case study for re‐introduction as part of future conservation efforts.  相似文献   

11.
Sclerophrys perreti is a critically endangered Nigerian native frog currently imperilled by human activities. A better understanding of its potential distribution and habitat suitability will aid in conservation; however, such knowledge is limited for S. perreti. Herein, we used a species distribution model (SDM) approach with all known occurrence data (n = 22) from our field surveys and primary literature, and environmental variable predictors (19 bioclimatic variables, elevation and land cover) to elucidate habitat suitability and impact of climate change on this species. The SDM showed that temperature and precipitation were the predictors of habitat suitability for S. perreti with precipitation seasonality as the strongest predictor of habitat suitability. The following variable also had a significant effect on habitat suitability: temperature seasonality, temperature annual range, precipitation of driest month, mean temperature of wettest quarter and isothermality. The model predicted current suitable habitat for S. perreti covering an area of 1,115 km2. However, this habitat is predicted to experience 60% reduction by 2050 owing to changes in temperature and precipitation. SDM also showed that suitable habitat exists in south-eastern range of the inselberg with predicted low impact of climate change compared to other ranges. Therefore, this study recommends improved conservation measures through collaborations and stakeholder's meeting with local farmers for the management and protection of S. perreti.  相似文献   

12.
Assuming that co‐distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM‐based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5/RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of protected areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hot spots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate‐change models suggested (in comparison with the present distribution model) an increase in area of 3.0–10.0% and 3.0–9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long‐term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggest that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem.  相似文献   

13.
Protected areas are essential conservation tools for mitigating the rapid decline of biodiversity. However, climate change represents one of the main challenges to their long-term effectiveness, as it induces rapid changes in the geographical distribution of many species. We used ecological niche modelling to predict the impacts of climate change on the distribution of five endemic owls in the Atlantic Forest and evaluated the effectiveness of the protected areas network for their conservation. The results indicate that the protected areas network is currently effective in terms of representativeness for most species; however, there will be a decline for all species in the coming decades because of climate change. We found that the ecoregions in the northern part of the Atlantic Forest will experience a higher loss of species, whereas those ecoregions in the southern part will be important stable climatic refuges in the future. Therefore, we emphasize the need to complement the network of protected areas to increase their representativeness in the distribution of species that will be affected by climate change, reducing species loss and increasing connectivity between suitable areas. We hope the results presented herein will serve as a basis for decision-makers to re-evaluate and improve current conservation policies and decisions in order to address the challenges posed by climate change and secure the survival of these species.  相似文献   

14.
张微  姜哲  巩虎忠  栾晓峰 《生态学报》2016,36(7):1815-1823
气候变化是造成生物多样性下降和物种灭绝的主要因素之一。研究气候变化对物种生境,尤其是濒危物种生境影响对未来保护物种多样性和保持生态系统功能完整性具有重要意义。以驼鹿乌苏里亚种(Alces alces cameloides)为研究对象,选取了对驼鹿分布可能存在影响的22个环境因子,利用最大熵(Maxent)模型模拟了驼鹿基准气候条件下在我国东北的潜在生境分布,并预测了RCP4.5和RCP8.5两种气候变化情景下2041—2060年(2050s)、2061—2080年(2070s)驼鹿潜在分布,采用接收工作曲线下面积(AUC)对模型预测能力进行评估。研究结果表明:最大熵模型预测驼鹿潜在生境分布的精度较高(平均AUC值为0.845),22个环境因子中,年均温、最暖季均温、年降水、平均日较差是影响驼鹿生境分布的主要因子。基准气候条件下,驼鹿的潜在生境面积占研究区域总面积的36.4%,潜在生境分布区主要在大、小兴安岭。随着时间的推移,研究区内驼鹿当前潜在生境面积明显减少,而新增潜在生境面积较少,总面积呈现急剧减少的趋势,其中RCP8.5情景减少程度大于RCP4.5情景。至2050s阶段,当前潜在生境面积平均将减少62.3%,新增潜在分布面积平均仅为3.6%,总潜在生境面积最高将减少65.6%,平均将减少58.8%;至2070s阶段,当前潜在生境面积平均将减少75.8%,新增潜在分布面积平均仅为1.9%,总潜在生境面积最高将减少93.1%,平均减少73.9%。空间分布上,驼鹿的潜在生境的几何中心将先向西北移动,然后再向高纬度地区西南方向迁移,至2050s阶段,潜在分布生境的几何中心在RCP4.5和RCP8.5情景下的迁移距离分别为183.5 km和210.8 km;至2070s阶段,相应情景下的迁移距离将缩短至28.7 km和33.8 km。潜在生境分布整体呈现向高海拔、高纬度迁移的趋势。  相似文献   

15.
There is an increasing need for conservation programmes to make quantitative predictions of biodiversity responses to changed environments. Such predictions will be particularly important to promote species recovery in fragmented landscapes, and to understand and facilitate distribution responses to climate change. Here, we model expansion rates of a test species (a rare butterfly, Hesperia comma) in five landscapes over 18 years (generations), using a metapopulation model (the incidence function model). Expansion rates increased with the area, quality and proximity of habitat patches available for colonization, with predicted expansion rates closely matching observed rates in test landscapes. Habitat fragmentation constrained expansion, but in a predictable way, suggesting that it will prove feasible both to understand variation in expansion rates and to develop conservation programmes to increase rates of range expansion in such species.  相似文献   

16.
Aim Elevation and climate ranges across latitude experienced by 21 wide‐ranging mammal species in western North America were summarized to examine two questions: (1) do populations in the northern and southern portions of a species’ range experience different climates or are environments selected to remain similar to climates at the core of ranges; and (2) how do species’ elevational ranges, experienced temperature seasonality and temperature ranges change across latitude? Given the larger effects of climate oscillations in the north vs. the south, a predicted outcome is for species to conserve climate niches across latitude and to show reduced climate and elevation ranges in the north. An alternative outcome is latitudinal niche diversification and increased climate variation in the north. Location Western North America. Methods The questions above were examined using a combination of species occurrence data bases, climate data bases, simple summaries of means and standard deviations and by testing summaries against random distributions across latitude for 21 mammal species from a variety of orders. Results The results showed that: (i) most species conserve their niche strongly or weakly given overall temperature gradients from north to south; (ii) seasonality experienced by species is relatively static until the highest latitudes despite directional trends across the region; and (iii) the elevation range and temperature variation that species experience decreases from south to north. Main conclusions Populations at range edges appear to partition environments to remain closer to temperature values similar to those at the core of the range. In addition, seasonality is not a likely explanatory factor of genetic diversity in latitudinal gradients. The data are instead more consistent with predictions that a combination of higher gene‐flow, increasing environmental instability and decreasing elevation gradients in the north compared to the south may lead to negative correlations between latitude and species’ climate variation. The results corroborate risks faced by northern mammal populations to global climate changes.  相似文献   

17.
Climate change may shrink and/or shift plant species ranges thereby increasing their vulnerability and requiring targeted conservation to facilitate adaptation. We quantified the vulnerability to climate change of plant species based on exposure, sensitivity and adaptive capacity and assessed the effects of including these components in complementarity‐based spatial conservation prioritisation. We modelled the vulnerability of 584 native plant species under three climate change scenarios in an 11.9 million hectare fragmented agricultural region in southern Australia. We represented exposure as species' geographical range under each climate change scenario as quantified using species distribution models. We calculated sensitivity as a function of the impact of climate change on species' geographical ranges. Using a dispersal kernel, we quantified adaptive capacity as species' ability to migrate to new geographical ranges under each climate change scenario. Using Zonation, we assessed the impact of individual components of vulnerability (exposure, sensitivity and adaptive capacity) on spatial conservation priorities and levels of species representation in priority areas under each climate change scenario. The full vulnerability framework proved an effective basis for identifying spatial conservation priorities under climate change. Including different dimensions of vulnerability had significant implications for spatial conservation priorities. Incorporating adaptive capacity increased the level of representation of most species. However, prioritising sensitive species reduced the representation of other species. We conclude that whilst taking an integrated approach to mitigating species vulnerability to climate change can ensure sensitive species are well‐represented in a conservation network, this can come at the cost of reduced representation of other species. Conservation planning decisions aimed at reducing species vulnerability to climate change need to be made in full cognisance of the sensitivity of spatial conservation priorities to individual components of vulnerability, and the trade‐offs associated with focussing on sensitive species.  相似文献   

18.
福建三明钩栲种群与主要伴生树种生态位研究   总被引:1,自引:0,他引:1  
采用Levins生态位宽度及重叠、Shannon-Wiener生态位宽度测度式,定量分析福建三明钩栲群落8个主要伴生树种的生态位宽度、生态位重叠。结果表明,该群落中优势种的生态位宽度值均普遍较大;生态位宽的种群对生态位窄的种群可能有较大的重叠值,反之则低;揭示钩栲的生态位特征及空间分布格局,对今后生产实践具有一定的参考价值。  相似文献   

19.
Abstract.  1.  Maculinea alcon , a myrmecophilic, stenotopic lycaenid butterfly is restricted to wet heathlands, bogs, and nutrient-poor hay meadows. Due to intensification of agriculture and decrease of extensively grazed meadows, many suitable habitats have disappeared and the remaining ones are highly fragmented and deteriorated.
2. Historical distribution data and a comparison with the present occupation of patches show the decline of this critically endangered butterfly in north-west Germany. Most of the populations in north-west Germany are small and often geographically isolated.
3. In summer 2002, two-thirds of 77 investigated potential patches were unoccupied as a result of unsuitable habitat structure and habitat fragmentation.
4. Several habitat parameters were highly significantly correlated with the presence of M. alcon , in particular the distribution pattern of the host plant Gentiana pneumonanthe. Furthermore, butterflies were absent from many patches with an incidence probability below 50% with respect to patch size and isolation.
5. In the nature reserve Lüneburger Heide, part of the study area, M. alcon populations have been observed since 1995. Typical turnover of local populations could be detected during these years. Extinctions and re-colonisations have stabilised the presence of this species in a metapopulation in this nature reserve.
6. These data show the importance of different factors on different spatial levels influencing the presence of this endangered butterfly.  相似文献   

20.
Climate change‐induced species range shift may pose severe challenges to species conservation. The Qinghai‐Tibet Plateau is the highest and biggest plateau, and also one of the most sensitive areas to global warming in the world, which provides important shelters for a unique assemblage of species. Here, ecological niche‐based model was employed to project the potential distributions of 59 key rare and endangered species under three climate change scenarios (RCP2.6, RCP4.5 and RCP8.5) in Qinghai Province. I assessed the potential impacts of climate change on these key species (habitats, species richness and turnover) and effectiveness of nature reserves (NRs) in protecting these species. The results revealed that that climate change would shrink the geographic ranges of about a third studied species and expand the habitats for two thirds of these species, which would thus alter the conservation value of some local areas and conservation effectiveness of some NRs in Qinghai Province. Some regions require special attention as they are expected to experience significant changes in species turnover, species richness or newly colonized species in the future, including Haidong, Haibei and Haixi junctions, the southwestern Yushu, Qinghai Nuomuhong Provincial NR, Qinghai Qaidam and Haloxylon Forest NR. The Haidong and the eastern part of Haibei, are projected to have high species richness and conservation value in both current and future, but they are currently not protected, and thus require extra protection in the future. The results could provide the first basis on the high latitude region to formulate biodiversity conservation strategies on climate change adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号