首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since such factors as temperature and time of the process had a significant effect on the residual activity of the mother solution during crystallization of tetracyclines, it was necessary to study the effect of the above factors on the process for determination of the crystallization optimal conditions. The experimental data provided creation of the regression equations and the curves for similar levels of the main parameters for tetracycline and oxytetracycline were calculated. The lowest values of the mother solution activity within the ranges tested were observed at the temperature of 2 degrees and the time of 3 hours.  相似文献   

2.
Characteristics of the powder dispersity of tetracycline base samples prepared by directed crystallization with variation of the process conditions were determined by the sedimentation method. It was found that the speed of the solution agitation had the maximum effect on the level and nature of the dispersity. The rate of the solution temperature and pH changing during the crystallization process had also a significant effect at low agitation speed.  相似文献   

3.
Filtration effects of turkey egg white lysozyme solution (TEWL) prior to subjecting it to crystallization conditions are investigated. Filtering TEWL solution and crystallizing it in ungelled media significantly decreased the number of conditions yielding crystals. This decrease dependent on the membrane cut-off used for filtration. From this, the postulated factors aiding in nucleation are estimated to be 0.17 microns in diameter. The existence of these factors was verified by the procedure of reversed filtration: filtered solutions passed through their inverted filter membrane a second time lead to improved crystallization results. The effect of aging of the TEWL solution prior to subjecting it to ungelled crystallization conditions was also verified. We did not find any time-dependent change in the size or the number of crystals per drop. Repeating the filtration experiments in agarose-gelled crystallization media showed that the influence of filtration on the crystallization outcome was significantly diminished. Far better crystallization results were obtained compared to ungelled media. However, there is a certain aging effect linked to filtration in gelled media. Different crystallization results were obtained depending on whether filtration was performed before or after aging and subsequent crystallization. This suggests a secondary time-dependent effect.  相似文献   

4.
温度控制作为调控蛋白质结晶过程的手段,在结晶实验中被广泛采用。热历史效应作为蛋白质结晶实验中新的影响因素,已被越来越多的科学家所重视。控制温度可以改变蛋白质的溶解度,进一步改变溶液的过饱和度,从而影响结晶过程。我们简要总结了温度对蛋白质结晶的影响及应用温度技术控制蛋白质晶体生长的各种技术,为蛋白质结晶工作提供理论和实验依据。  相似文献   

5.
Control of nucleation in the crystallization of lysozyme.   总被引:2,自引:1,他引:1  
This work investigates the influence of storage of lysozyme in solution on its crystallization. The crystallization of hen egg-white lysozyme exhibits a storage effect (aging) that depends on the length of time the lysozyme solution is stored, after dissolving from freeze-dried powder, before being brought to crystallization conditions. The number of crystals obtained increases, while their size decreases, as the solution ages. Observations suggest that this effect is due to the presence of fungi that multiply in the stored protein solution. This aging effect was used to control nucleation and determine the number and size of lysozyme crystals to be formed in a given sample.  相似文献   

6.
Protein phase behavior is implicated in numerous aspects of downstream processing either by design, as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. An improved understanding of protein phase behavior is, therefore, important for developing rational design strategies for important process steps. This work explores the phase behavior of a monoclonal antibody (mAb), IDEC-152, which exhibits liquid-liquid separation, aggregation, gelation, and crystallization. A systematic study of numerous factors, including the effects of solution composition and pH, has been conducted to explore the phase behavior of this antibody. Phenomena observed include a significant dependence of the cloud point on the cation in sulfate salts and nonmonotonic trends in pH dependence. Additionally, conditions for crystallization of this mAb are reported for the first time. Protein-protein interactions, as determined from the osmotic second virial coefficient, are used to interpret the phase behavior.  相似文献   

7.
Study on the metastable zone width of ketoprofen   总被引:1,自引:0,他引:1  
Lu YH  Ching CB 《Chirality》2006,18(4):239-244
With increasing awareness for the need of pure enantiomer drugs, strong emphasis has been focused on the research of chiral drug separation. Compared with other separation methods, crystallization is a simple and economical method, and the metastable zone width (MSZW) is a very important factor for the entire crystallization process. In this paper, the effects of the metastable zones of (R,S)- and (S)-ketoprofen and a 0.94 mole fraction of (S)-ketoprofen in order to enhance the MSZW were studied. Four main factors were studied, namely, temperature, cooling rate, stirring rate, and volume ratio of mixed solvent (water/ethanol). Through the L9 fractional experiment design, it was observed that all samples' MSZWs would increase with an increase in cooling rate and decrease with an increase in the ethanol volume ratio and temperature. The ethanol ratio may have the strongest effect on the process and can greatly enhance the metastable zone, and the other three factors influence the MSZW only slightly. In conclusion, the these four factors for enhancing MSZW have been optimized: water-to-ethanol volume ratio, 1:0.6; temperature, 20 degrees C; stirring rate, 700 rpm; and cooling rate, 12.0 degrees C/h. All of these results will be helpful for the following chiral separation of ketoprofen by crystallization.  相似文献   

8.
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the ?110? and ?101? lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.  相似文献   

9.
The study of the process of tetracycline base crystallization showed that with an increase in the rate of pH, temperature and mixed rotation changes, the specific surface of the crystalline precipitate increased with a simultaneous decrease in the bulk weight, looseness and volume density of the powder. The residual content of tetracycline in the mother solution decreased. The level of the effect of various parameters on the final results was different.  相似文献   

10.
Of many factors affecting protein crystallization, randomness in proteins has been given less attention although highly structured proteins would be at low entropy state. The factors, which impact on protein crystallization, are almost exclusively related to non-random amino acid properties such as physiochemical properties of amino acids. In this study, we used logistic regression and neural network to model the success rate of crystallization of 420 proteins from Staphylococcus aureus with each of non-random and random amino acid properties in order to determine whether randomness in a protein plays a role in the crystallization process. The results show that randomness is indeed involved in the crystallization process, and this rationale would enrich our knowledge on crystallization process and enhance our ability to crystallize more important proteins.  相似文献   

11.
Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.  相似文献   

12.
Trypsin crystallization by membrane-based techniques   总被引:4,自引:0,他引:4  
To grow protein crystals is not an easy task; moreover, if we need to grow protein crystals with controlled shape, size, and size distribution, depending on their application, the mission becomes even harder. Membrane crystallization has been recognized as an interesting tool for growing protein crystals with enhanced crystallization kinetics, both in static and in forced solution flow configuration, without detrimental effects on crystal quality. In the present work, we have studied the membrane crystallization process of benzamidine inhibited trypsin from bovine pancreas (BPT), with ammonium sulphate (dissolved in Tris-HCl buffer, 0.1 M, pH 8.5), as precipitant agent. We have demonstrated that, by using the membrane crystallization technique, BPT crystals can be obtained in 24-48 h, in static configuration, and in 4-7 days, in a forced solution flow system, depending on the experimental conditions. Furthermore, the kinetics of BPT crystallization have been modulated, to control the morphological characteristics of the crystals produced, by an accurate selection of the operative parameters involved in the process. The active membrane surface and the flow rate of extraction solvent in quiescent configuration, and the solution velocity in forced convection solution experiments, were the parameters investigated. In this respect, membrane crystallization techniques have been assessed as an interesting way for growing proteins, and more specifically enzyme crystals, with high control on the final properties of the crystalline material produced, with potential fundamental implication in the field of structural biology and biotechnology.  相似文献   

13.

Background

Protein crystallization is a slow process of trial and error and limits the amount of solved protein structures. Search of a universal heterogeneous nucleant is an effort to facilitate crystallizability of proteins.

Methodology

The effect of polystyrene nanospheres on protein crystallization were tested with three commercial proteins: lysozyme, xylanase, xylose isomerase, and with five research target proteins: hydrophobins HFBI and HFBII, laccase, sarcosine dimethylglycine N-methyltransferase (SDMT), and anti-testosterone Fab fragment 5F2. The use of nanospheres both in screening and as an additive for known crystallization conditions was studied. In screening, the addition of an aqueous solution of nanosphere to the crystallization drop had a significant positive effect on crystallization success in comparison to the control screen. As an additive in hydrophobin crystallization, the nanospheres altered the crystal packing, most likely due to the amphiphilic nature of hydrophobins. In the case of laccase, nanospheres could be used as an alternative for streak-seeding, which insofar had remained the only technique to produce high-diffracting crystals. With methyltransferase SDMT the nanospheres, used also as an additive, produced fewer, larger crystals in less time. Nanospheres, combined with the streak-seeding method, produced single 5F2 Fab crystals in shorter equilibration times.

Conclusions

All in all, the use of nanospheres in protein crystallization proved to be beneficial, both when screening new crystallization conditions to promote nucleation and when used as an additive to produce better quality crystals, faster. The polystyrene nanospheres are easy to use, commercially available and close to being inert, as even with amphiphilic proteins only the crystal packing is altered and the nanospheres do not interfere with the structure and function of the protein.  相似文献   

14.
Small angle neutron scattering (SANS) method was used to study lysozyme solutions, with particular interest in an understanding of the crystallization process at the initial stage. It is found that (1) in the unsaturated solution, the protein molecules aggregate with a continuous increase in size when NaCl concentration is increased, and (2) in the supersaturated solution, an irreversible change, superimposed on the former process, occurs when the supersaturation is realized. These facts indicate the usefulness of SANS in detecting changes of protein molecules in solution on the nanometer scale. The reliability of the SANS results are indicated by (1) comparing them with those of small angle X-ray scattering (SAXS), and (2) comparing the effect of D(2)O and H(2)O as solvent. Since the interparticle interaction is essential in the crystallization process and a simple Guinier plot analysis is not allowed, a more rigorous framework of analyzing data with interference function is developed, through which both average interparticle distance and particle size are estimated.  相似文献   

15.
Polarimetry is used for continuous online monitoring of optical resolution by preferential crystallization. In combination with refractometry the liquid phase composition is determined, allowing one to follow the resolution progress quantitatively. The measurement techniques were calibrated up to relatively high solution concentrations and combined with the crystallizer. The resolution of DL-threonine was performed by preferential crystallization experiments in aqueous solution varying several process parameters like supersaturation, seed amount, initial enantiomeric excess, and scale. The resolution progress can be conveniently described by profiles of the optical rotation (polarimetric signal) and the crystallization pathway in the corresponding ternary phase diagram. The method outlined is applicable for dynamic process optimization and control purposes in "quasi-continuous" chiral separation processes.  相似文献   

16.
Protein purification by bulk crystallization: the recovery of ovalbumin   总被引:4,自引:0,他引:4  
Crystallization is used industrially for the recovery and purification of many inorganic and organic materials. However, very little is reported on the application of bulk crystallization for proteins. In this work, ovalbumin was selected as a model protein to investigate the feasibility of using bulk crystallization for the recovery and purification of proteins. A stirred 1-L seeded batch crystallizer was used to obtain the crystal growth kinetics of ovalbumin in ammonium sulfate solutions at 30 degrees C. The width of the metastable region, in which crystal growth can occur without any nucleation, is equivalent to a relative supersaturation of about 20. The bulk crystallizations were undertaken within this range (using initial relative supersaturations less than 10) and nucleation was not observed. The ovalbumin concentration in solution was measured by UV absorbance and checked by crystal content measurement. Crystal size distributions were measured both by using a Malvern Mastersizer and by counting crystals through a microscope. The crystal growth rate was found to have a second-order dependence upon the ovalbumin supersaturation. While there is no discernible effect of ammonium sulfate concentration at pH 4.90, there is a slight effect at higher pH values. Overall the effect of ammonium sulfate concentration is small compared to the effect of pH, for which there is a 10-fold increase in the growth rate constant, k(Gsigma) over the range pH 4.6-5.4. To demonstrate the degree of purification which can be achieved by bulk crystallization, ovalbumin was crystallized from a solution containing conalbumin (80,000 Da) and lysozyme (14, 600 Da). After one crystallization and a crystal wash, ovalbumin crystals were produced with a protein purity greater than 99%. No contamination by the other proteins was observed when using overloaded sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie blue stain and only trace amounts of lysozyme were observed using a silver stain. The presence of these other proteins in solution did not effect the crystal growth rate constant, k(Gsigma). The study demonstrates the feasibility of using bulk crystallization for the recovery and purification of ovalbumin. It should be readily applicable to other protein systems. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
A cicatrix formed in the process of posttraumatic skin regeneration is characterized by a higher cell adhesion power in the upper, and, especially, in the middle epidermis stratum. The cell adhesion power indices in these strata, and cell mitotic activity of basal epidermis stratum near the cicatrix depend on conditions of connective tissue formation in the wound defect. The effect of physiological solution and trypsin on the wound process results in a moderate rising of intercellular contact strength and in decreasing in the number of dividing basal stratum cells, while addition of ronidase solution results in a sharp rising of the corneous scale adhesion strength, and in establishing the straight correlation between this index and the speed of epidermocyte production.  相似文献   

18.
Membrane crystallization is an innovative concept to treat water and recover minerals from concentrates. Thus, it will also be beneficial to the existing mineral extraction industry. This process combines membrane distillation (MD) with crystallization. While MD produces water and concentrates the feed, crystalliser forms crystals from supersaturated minerals in the concentrated feed. This review covers principles of this process, factors affecting membrane crystallization for water treatment, application of membrane crystallization, resource recovery and the fouling of membrane crystallization. Membrane crystallization could recover many minerals including sodium, magnesium, barium, strontium, and lithium. However, fouling is a major challenge for its widespread implementation. Further directions for future research and development of this process are also considered with a view to the sustainable operation of the process.  相似文献   

19.
In this paper droplet evaporative crystallization of salicylic acid (SA) and acetylsalicylic acid (ASA) crystals on different surfaces, such as glass, polyvinyl alcohol (PVA), and paraffin was studied. The obtained crystals were analyzed using powder X-ray diffraction (PXRD) technique. In order to better understand the effect of the surface on evaporative crystallization, crystals deposited on glass were scraped off. Moreover, evaporative crystallization of a large volume of solution was performed. As we found, paraffin which is non-polar surface promotes formation of crystals morphologically similar to those obtained via bulk evaporative crystallization. On the other hand, when crystallization is carried out on the polar surfaces (glass and PVA), there is a significant orientation effect. This phenomenon is manifested by the reduction of the number of peaks in PXRD spectrum recorded for deposited on the surface crystals. Noteworthy, reduction of PXRD signals is not observed for powder samples obtained after scraping crystals off the glass. In order to explain the mechanism of carboxylic crystals growth on the polar surfaces, quantum-chemical computations were performed. It has been found that crystal faces of the strongest orientation effect can be characterized by the highest surface densities of intermolecular interactions energy (IIE). In case of SA and ASA crystals formed on the polar surfaces the most dominant faces are characterized by the highest adhesive and cohesive properties. This suggests that the selection rules of the orientation effect comes directly from surface IIE densities.  相似文献   

20.
Stirred crystallization of racemic (D/L)‐glutamic acid (Glu) in the presence of small amounts of L‐ or D‐lysine (Lys) was studied for the effect of transient chiral resolution by monitoring the time evolution of optical rotation and the concentration of the solution. The presence of a small amount of L‐ or D‐Lys retards the crystallization rate of the corresponding enantiomer of Glu in a chirally selective manner, giving rise to transient optical resolution of racemic Glu during crystallization. The optical rotation of the Glu solution was found to increase from zero to a value corresponding to an enantiomeric excess (ee) of 22–35% and subsequently decreases to zero over a period of many hours. During this process, the ee of the crystallized Gu is nearly 100% during the first 35 min and then it decreases slowly to zero. Our results indicate that the time at which the ee of the solution reaches its maximum and the maximum value of the ee show a nonlinear dependence on the initial mole fraction of the chiral impurity. The effect of the impurity is highly chirally selective, indicating “molecular recognition.” Chirality 11:343–348, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号