首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Streptomyces cinnamonensis produces a new substance named AIB (for anti-isobutyrate) factor which, on a solid medium, efficiently counteracts toxic concentrations not only of isobutyrate but also of other salts of short-chain monocarboxylic acids. In the present study we demonstrate that the AIB factor activity is widely spread because this effect was positively detected in 25 of 31 randomly chosen microorganisms (streptomycetes, ascomycetes, zygomycetes and basidiomycetes). The AIB factor produced by the tested microorganisms on an agar media allows for germination, growth, and sporulation of the testingStreptomyces coelicolor on an agar medium containing 20 mmol/L acetate, propionate, butyrate, isobutyrate, valerate, isovalerate, and 2-methylbutyrate. The activity of the AIB factor from different sources towards these substances differs.  相似文献   

2.
The coenzyme B(12)-dependent isobutyryl coenzyme A (CoA) mutase (ICM) and methylmalonyl-CoA mutase (MCM) catalyze the isomerization of n-butyryl-CoA to isobutyryl-CoA and of methylmalonyl-CoA to succinyl-CoA, respectively. The influence that both mutases have on the conversion of n- and isobutyryl-CoA to methylmalonyl-CoA and the use of the latter in polyketide biosynthesis have been investigated with the polyether antibiotic (monensin) producer Streptomyces cinnamonensis. Mutants prepared by inserting a hygromycin resistance gene (hygB) into either icmA or mutB, encoding the large subunits of ICM and MCM, respectively, have been characterized. The icmA::hygB mutant was unable to grow on valine or isobutyrate as the sole carbon source but grew normally on butyrate, indicating a key role for ICM in valine and isobutyrate metabolism in minimal medium. The mutB::hygB mutant was unable to grow on propionate and grew only weakly on butyrate and isobutyrate as sole carbon sources. (13)C-labeling experiments show that in both mutants butyrate and acetoacetate may be incorporated into the propionate units in monensin A without cleavage to acetate units. Hence, n-butyryl-CoA may be converted into methylmalonyl-CoA through a carbon skeleton rearrangement for which neither ICM nor MCM alone is essential.  相似文献   

3.
The ccr gene, encoding crotonyl coenzyme A (CoA) reductase (CCR), was cloned from Streptomyces cinnamonensis C730.1 and shown to encode a protein with 90% amino acid sequence identity to the CCRs of Streptomyces collinus and Streptomyces coelicolor. A ccr-disrupted mutant, S. cinnamonensis L1, was constructed by inserting the hyg resistance gene into a unique BglII site within the ccr coding region. By use of the ermE* promoter, the S. collinus ccr gene was expressed from plasmids in S. cinnamonensis C730. 1/pHL18 and L1/pHL18. CCR activity in mutant L1 was shown to decrease by more than 90% in both yeast extract-malt extract (YEME) medium and a complex fermentation medium, compared to that in wild-type C730.1. Compared to C730.1, mutants C730.1/pHL18 and L1/pHL18 exhibited a huge increase in CCR activity (14- and 13-fold, respectively) in YEME medium and a moderate increase (3.7- and 2. 7-fold, respectively) in the complex fermentation medium. In the complex fermentation medium, S. cinnamonensis L1 produced monensins A and B in a ratio of 12:88, dramatically lower than the 50:50 ratio observed for both C730.1 and C730.1/pHL18. Plasmid (pHL18)-based expression of the S. collinus ccr gene in mutant L1 increased the monensin A/monensin B ratio to 42:58. Labeling experiments with [1, 2-(13)C(2)]acetate demonstrated the same levels of intact incorporation of this material into the butyrate-derived portion of monensin A in both C730.1 and mutant C730.1/pLH18 but a markedly decreased level of such incorporation in mutant L1. The addition of crotonic acid at 15 mM led to significant increases in the monensin A/monensin B ratio in C730.1 and C730.1/pHL18 but had no effect in S. cinnamonensis L1. These results demonstrate that CCR plays a significant role in providing butyryl-CoA for monensin A biosynthesis and is present in wild-type S. cinnamonensis C730.1 at a level sufficient that the availability of the appropriate substrate (crotonyl-CoA) is limiting.  相似文献   

4.
Crotonyl-CoA reductase (CCR), which catalyzes the reduction of crotonyl-CoA to butyryl-CoA, is common to most streptomycetes and appears to be inducible by either lysine or its catabolites in Streptomyces cinnamonensis grown in chemically defined medium. A major role of CCR in providing butyryl-CoA from acetate for monensin A biosynthesis has been demonstrated by the observation of a change in the monensin A/monensin B ratio in the parent C730.1 strain (50/50) and a ccr (encoding CCR) disruptant (12:88) of S. cinnamonensis in a complex medium. Both strains produce significantly higher monensin A/monensin B ratios in a chemically defined medium containing valine as a major carbon source than in either complex medium or chemically defined medium containing alternate amino acids. This observation demonstrates that under certain growth conditions valine catabolism may have a more significant role than CCR in providing butyryl-CoA. Such a process most likely involves an isomerization of the valine catabolite isobutyryl-CoA, catalyzed by the coenzyme B(12)-dependent isobutyryl-CoA mutase. Monensin labeling experiments using dual (13)C-labeled acetate in the ccr-disrupted S. cinnamonensis indicate the presence of an additional coenzyme B(12)-dependent mutase linking branched and straight-chain C(4) compounds by a new pathway.  相似文献   

5.
The msdA gene encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is known to be involved in valine catabolism in Streptomyces coelicolor. Using degenerative primers, a homolog of msdA gene was cloned and sequenced from the monensin producer, Streptomyces cinnamonensis. RT-PCR results showed msdA was expressed in a vegetative culture, bump-seed culture and the early stages of oil-based monensin fermentation. However, isotopic labeling of monensin A by [2, 4-13C2]butyrate revealed that this MSDH does not play a role in providing precursors such as methylmalonyl-CoA for the monensin biosynthesis under these fermentation conditions. Using a PCR-targeting method, msdA was disrupted by insertion of an apramycin resistance gene in S. cinnamonensis C730.1. Fermentation results revealed that the resulting ΔmsdA mutant (CXL1.1) produced comparable levels of monensin to that observed for C730.1. This result is consistent with the hypothesis that butyrate metabolism in S. cinnamonensis in the oil-based fermentation is not mediated by msdA, and that methylmalonyl-CoA is probably produced through direct oxidation of the pro-S methyl group of isobutyryl-CoA. The CXL1.1 mutant and C730.1 were both able to grow in minimal medium with valine or butyrate as the sole carbon source, contrasting previous observations for S. coelicolor which demonstrated msdA is required for growth on valine. In conclusion, loss of the S. cinnamonensis msdA neither affects valine catabolism in a minimal medium, nor butyrate metabolism in an oil-based medium, and its role remains an enigma.  相似文献   

6.
Biosynthesis of monensins a and b: the role of isoleucine   总被引:3,自引:0,他引:3  
Isoleucine added to the cultivation medium of Streptomyces cinnamonensis C-100-5 induced a relative increase of the production of monensin B at the expense of monensin A. U-14C-Isoleucine was found not to be a specific monensin B precursor. The incorporation of 1-13C-2-methylbutyrate into monensins A and B showed the label to be evenly incorporated in both products at carbon atoms originating from C(1) of propionate. In regulatory mutants insensitive to 2-amino-3-chlorobutyrate isoleucine influenced the production of monensins only slightly but strains resistant to 2-aminobutyrate and norleucine decreased their total production by 2-12% in the presence of isoleucine which was associated with a decrease of monensin A content by 14-52%. The inhibitory effect of isoleucine on the biosynthesis of valine, a specific precursor of the butyrate unit of monensin A, is discussed.  相似文献   

7.
Effect of precursors on biosynthesis of monensins A and B   总被引:1,自引:0,他引:1  
Precursors of monensins (acetate, propionate, butyrate, isobutyrate) affect the total production and the relative proportion of monensins A and B. Addition of propionate into the fermentation medium causes a prevalence of monensin B whereas butyrate and isobutyrate stimulate the production of monensin A and suppress the production of monensin B.  相似文献   

8.
Variants resistant to propionate were prepared from a mutant strain of Streptomyces cinnamonensis producing predominantly monensin A. Using selected resistants the production of monensins (in media with higher concentrations of propionate) was examined. Stimulation of monensin synthesis by propionate was observed with 70% of the resistants studied. Propionate did not influence the ratio between monensin A and B production.  相似文献   

9.
The ratio of the major monensin analogs produced by Streptomyces cinnamonensis is dependent upon the relative levels of the biosynthetic precursors methylmalonyl-coenzyme A (CoA) (monensin A and monensin B) and ethylmalonyl-CoA (monensin A). The meaA gene of this organism was cloned and sequenced and was shown to encode a putative 74-kDa protein with significant amino acid sequence identity to methylmalonyl-CoA mutase (MCM) (40%) and isobutyryl-CoA mutase (ICM) large subunit (36%) and small subunit (52%) from the same organism. The predicted C terminus of MeaA contains structural features highly conserved in all coenzyme B12-dependent mutases. Plasmid-based expression of meaA from the ermE* promoter in the S. cinnamonensis C730.1 strain resulted in a decreased ratio of monensin A to monensin B, from 1:1 to 1:3. Conversely, this ratio increased to 4:1 in a meaA mutant, S. cinnamonensis WM2 (generated from the C730.1 strain by insertional inactivation of meaA by using the erythromycin resistance gene). In both of these experiments, the overall monensin titers were not significantly affected. Monensin titers, however, did decrease over 90% in an S. cinnamonensis WD2 strain (an icm meaA mutant). Monensin titers in the WD2 strain were restored to at least wild-type levels by plasmid-based expression of the meaA gene or the Amycolatopsis mediterranei mutAB genes (encoding MCM). In contrast, growth of the WD2 strain in the presence of 0.8 M valine led only to a partial restoration (<25%) of monensin titers. These results demonstrate that the meaA gene product is significantly involved in methylmalonyl-CoA production in S. cinnamonensis and that under the tested conditions the presence of both MeaA and ICM is crucial for monensin production in the WD2 strain. These results also indicate that valine degradation, implicated in providing methylmalonyl-CoA precursors for many polyketide biosynthetic processes, does not do so to a significant degree for monensin biosynthesis in the WD2 mutant.  相似文献   

10.
Abstract We prepared mutants of Streptomyces cinnamonensis resistant to amino acid analogues: 2-aminobutyrate, norvaline, norleucine, 2-amino-3-chlorobutyrate and ethionine. The regulatory mutants were studied as to their production of oligoketide antibiotics, monensins A and B, as dependent on the formation of valine which is a precursor of the butyrate building unit of monensin A. Strains resistant to both 2-amino-3-chlorobutyrate and norleucine exhibited an increased production of monensin A from 50% to 90–93% of total monensins.  相似文献   

11.
肉桂地链霉菌(S.cinnamonensis)是莫能菌素(Monensin)的产生菌,大肠杆菌-链霉菌穿梭表达载体pHZ1252中的透明颤菌血红蛋白基因(vhb)位于硫链丝菌素诱导启动子PtipA之下,它在肉桂地链霉菌中的结构不稳定,,发生了重组缺失,缺失的片段包括大肠杆菌质粒部分vhb基因。但来自阿维链霉菌(S.avermitilis)中缺失了大肠杆菌质粒部分却保留了完整的vhb基因及tipA启动子的pHZ1252,可在肉桂地链霉菌中稳定复制,不再发生缺失,经硫链丝菌素诱导表达出了有生物活性的VHb蛋白,摇瓶发酵实验证明,VHb蛋白在氧限条件下可明显促进肉桂地链霉菌的菌体生长和抗生素合成。  相似文献   

12.
The analysis of a candidate biosynthetic gene cluster (97 kbp) for the polyether ionophore monensin from Streptomyces cinnamonensis has revealed a modular polyketide synthase composed of eight separate multienzyme subunits housing a total of 12 extension modules, and flanked by numerous other genes for which a plausible function in monensin biosynthesis can be ascribed. Deletion of essentially all these clustered genes specifically abolished monensin production, while overexpression in S. cinnamonensis of the putative pathway-specific regulatory gene monR led to a fivefold increase in monensin production. Experimental support is presented for a recently-proposed mechanism, for oxidative cyclization of a linear polyketide intermediate, involving four enzymes, the products of monBI, monBII, monCI and monCII. In frame deletion of either of the individual genes monCII (encoding a putative cyclase) or monBII (encoding a putative novel isomerase) specifically abolished monensin production. Also, heterologous expression of monCI, encoding a flavin-linked epoxidase, in S. coelicolor was shown to significantly increase the ability of S. coelicolor to epoxidize linalool, a model substrate for the presumed linear polyketide intermediate in monensin biosynthesis.  相似文献   

13.
14.
Labelled sodium isobutyrate [(CD3)2-CHCOONa] was added to the culture medium of Streptomyces fradiae and up to 14 atoms of deuterium were found to be incorporated into a molecule of tylosin aglycone (tylactone). This observation is in accordance with the data in the literature. When fatty acids were analyzed, as much as 34% of the isobutyrate incorporated into the cell was formed to be transformed into butyrate that was used for the synthesis of even, straight-chain fatty acids; 57% of the labelled isobutyrate was incorporated into the even isoacids, whereas 9% was degraded to propionate and further used for the synthesis of the odd acids.  相似文献   

15.
Metyrapone, a potent cytochrome P-450 inhibitor, added at 9 mM to a submerged culture of Streptomyces cinnamonensis caused partial inhibition of total monensin biosynthesis and coproduction of new metabolites, 26-deoxymonensins A and B. The latter was isolated as its 25-O-methyl derivative. Metyrapone was simultaneously reduced to metyrapol. All of these compounds were identified by nuclear magnetic resonance spectroscopy and mass spectrometry.  相似文献   

16.
A new electroanalytical method of voltamperometry at the interface of two immiscible electrolyte solutions (ITIES) is based on electrochemical polarization of a liquid/liquid interface. The resulting current voltage characteristics completely resemble those obtained with metallic electrodes. The charge transfer processes are either the direct ion transfer across the ITIES or the transfer facilitated by macrocyclic ionophores. Determination of tetracycline antibiotics is based on the direct transfer of the cationic forms of these substances in acid media. Determination of valinomycin, nonactin and monensin acting as ion carriers is connected with the facilitated alkali metal ion transfer. In general, antibiotic concentrations higher than 0.02-0.05 mmol/l can be determined with this method. Monensin can also be determined in the extracts of Streptomyces cinnamonensis.  相似文献   

17.
The effect of formate and hydrogen on isomerization and syntrophic degradation of butyrate and isobutyrate was investigated using a defined methanogenic culture, consisting of syntrophic isobutyrate-butyrate degrader strain IB, Methanobacterium formicicum strain T1N, and Methanosarcina mazeii strain T18. Formate and hydrogen were used to perturb syntrophic butyrate and isobutyrate degradation by the culture. The reversible isomerization between isobutyrate and butyrate was inhibited by the addition of either formate or hydrogen, indicating that the isomerization was coupled with syntrophic butyrate degradation for the culture studied. Energetic analysis indicates that the direction of isomerization between isobutyrate and butyrate is controlled by the ratio between the two acids, and the most thermodynamically favorable condition for the degradation of butyrate or isobutyrate in conjunction with the isomerization is at almost equal concentrations of isobutyrate and butyrate. The degradation of isobutyrate and butyrate was completely inhibited in the presence of a high hydrogen partial pressure (>2000 Pa) or a measurable level of formate (10 muM or higher). Significant formate (more than 1 mM) was detected during the perturbation with hydrogen (17 to 40 kPa). Resumption of butyrate and isobutyrate degradation was related to the removal of formate. Energetic analysis supported that formate was another electron carrier, besides hydrogen, during syntrophic isobutyrate-butyrate degradation by this culture. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
Phenolic antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) at concentration 0.55 mM and 2.25 mM, respectively, added to cultures of Streptomyces cinnamonensis C-100-5 caused up to 380% higher production of polyether antibiotic monensin. S. cinnamonensis exhibits high tolerance to BHT, but it is more sensitive towards BHA. 5.5 mM BHA practically stopped growth, while 45 mM BHT still stimulated antibiotic production. Another antioxidants probucol and tocoferol acetate did not exert such positive effects. BHA was predominantly metabolised to 5-hydroxy-BHA. When BHA and BHT were applied simultaneously, the main transformation metabolite was 3,3,5,5-tetra-tert-butyl-stilbene-4,4-quinone accompanied by 1,2-bis(3,5-di-tert-butyl-4-hydroxyphenyl)ethane.  相似文献   

19.
The Actinomycete strain KH29 is antagonistic to the multidrug-resistant Acinetobacter baumannii. Based on the diaminopimelic acid (DAP) type, and the morphological and physiological characteristics observed through the use of scanning electron microscopy (SEM), KH29 was confirmed as belonging to the genus Streptomyces. By way of its noted 16S rDNA nucleotide sequences, KH29 was found to have a relationship with Streptomyces cinnamonensis. The production of an antibiotic from this strain was found to be most favorable when cultured with glucose, polypeptone, and yeast extract (PY) medium for 6 days at 27 degrees C. The antibiotic produced was identified, through comparisons with reported spectral data including MS and NMR as a cyclo(L-tryptophanyl-L-tryptophanyl). Cyclo(L-Trp-L-Trp), from the PY cultures of KH29, was seen to be highly effective against 41 of 49 multidrugresistant Acinetobacter baumannii. Furthermore, cyclo(LTrp- L-Trp) had antimicrobial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Saccharomyces cerevisiae, Aspergillus niger, and Candida albicans, However, it was ineffective against Streptomyces murinus.  相似文献   

20.
Syntrophic degradation of normal- and branched-chain fatty acids with 4 to 9 carbons was investigated with a mesophilic syntrophic isobutyrate-butyrate-degrading triculture consisting of the non-spore-forming, syntrophic, fatty acid-degrading, gram-positive rod-shaped strain IB, Methanobacterium formicicum T1N, and Methanosarcina mazei T18. This triculture converted butyrate and isobutyrate to methane and converted valerate and 2-methylbutyrate to propionate and methane. This triculture also degraded caproate, 4-methylvalerate, heptanoate, 2-methylhexanoate, caprylate, and pelargoate. During the syntrophic conversion of isobutyrate and butyrate, a reversible isomerization between butyrate and isobutyrate occurred; isobutyrate and butyrate were isomerized to the other isomeric form to reach nearly equal concentrations and then their concentrations decreased at the same rates. Butyrate was an intermediate of syntrophic isobutyrate degradation. When butyrate was degraded in the presence of propionate, 2-methylbutyrate was synthesized from propionate and isobutyrate formed from butyrate. During the syntrophic degradation of valerate, isobutyrate, butyrate, and 2-methylbutyrate were formed and then degraded. During syntrophic degradation of 2-methylbutyrate, isobutyrate and butyrate were formed and then degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号