首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The analysis of non-disjunction of chromosome 21 and alphoid DNA variation by using cytogenetic and molecular cytogenetic techniques (quantitative fluorescence in situ hybridization) in 74 nuclear families was performed. The establishment of possible correlation between alphoid DNA variation, parental age, environmental effects, and non-disjunction of chromosome 21 was made. The efficiency of techniques applied was found to be 92% (68 from 74 cases). Maternal non-disjunction wasfound in 58 cases (86%) and paternal non-disjunction - in 7 cases (10%). Post-zygotic mitotic non-disjunction was determined in 2 cases (3%) and one case was associated with Robertsonian translocation 46,XX,der(21;21)(q10;q10), +21. Maternal meiosis I errors were found in 43 cases (64%) and maternal meiosis II errors--in 15 cases (22%). Paternal meiosis I errors occurred in 2 cases (3%) and paternal meiosis I errors--in 5 cases (7%). The lack of the correlation between alphoid DNA variation and non-disjunction of chromosome 21 was established. Sociogenetic analysis revealed the association of intensive drug therapy of infectious diseases during the periconceptual period and maternal meiotic non-disjunction of chromosome 21. The correlation between non-disjunction of chromosome 21 and increased parental age as well as exposure to irradiation, alcohol, tobacco, mutagenic substances was not found. The possible relevance of data obtained to the subsequent studies of chromosome 21 non-disjunction is discussed.  相似文献   

2.
Fluorescent in situ hybridization (FISH) utilizing an X chromosome whole library probe was used directly to assess the rate of aneuploidy and pairing behavior of the X chromosome in human female meiosis. Over 3000 meiotic cells obtained from fetal ovaries (gestational age 13–22 weeks) were scored for meiotic stage and evaluated for pairing abnormalities. No pairing anomalies were observed in 832 pachytenes. Twenty-two percent (88/398) of cells in zygotene were partially paired, but nonhomologous pairings could not be identified. One aneuploid preleptotene oocyte, presumably from mitotic nondisjunction was detected. To our knowledge, this is the first report of the use of FISH utilizing whole chromosome probes to evaluate the pairing behavior of chromosomes in human female meiosis. The application of this technique to study the relationship between nondisjunction and chromosome pairing behavior in maternal-age-related aneuploidy is discussed.  相似文献   

3.
The frequency and the distribution of aneuploidies were analysed in both spermatozoa and mature oocyte. The present study has pooled 13,975 human sperm chromosome complements and 1,897 oocyte chromosome complements examined to date. The overall frequency of aneuploidy is 10% in spermatozoa and 22.4% in oocytes. Human sperm is characterized by a significant excess of hypo-haploidies and an equitable distribution of aneuploidies among all chromosome groups, whereas mature oocytes display an equal ratio of hypo-haploidies: hyper-haploidies and a high variability in the distribution of non-disjunctions; in the A, B, C and especially in D and G groups, there is a significant difference between the observed and estimated rates of non-disjunction and the frequencies expected from an equal partitioning of non-disjunctions among all chromosomes. This indicates that non-disjunction is not a random event in female meiosis, and consequently that there are differences in the meiotic process between the sexes.  相似文献   

4.
Occupational exposure to styrene, a chemical extensively used worldwide, is under investigation for possible detrimental effects on human health, including male reproductive capacity. Aneuploidy in germ cells is the main cause of infertility, abortions and congenital diseases. Fluorescence in situ hybridisation (FISH), is the most efficient cytogenetic molecular technique to date to analyse numerical alterations of chromosomes in spermatozoa. We investigated the frequencies of aneuploidy and diploidy in individuals occupationally exposed to styrene and in healthy unexposed controls. We performed multicolour FISH, using DNA probes specific for the centromeric regions of sex chromosomes and chromosome 2, in decondensed sperm nuclei of samples with normal semen parameters for a total of 18 styrene-exposed subjects and 13 unexposed controls of the same age range. Exposed individuals had worked for at least 2 years during the last 5 years, and continuously for 6 months, in factories producing reinforced plastics. The incidence of aneuploidy and diploidy for the tested chromosomes did not show a statistically significant difference between workers and controls. The exposure to styrene was associated with increased frequencies of nullisomy for sex chromosomes in the group of non-smokers, although only a limited number of subjects belonged to this sub-group. Considering the whole study population, age was associated with an increased frequency of XX disomy, whereas smoking was associated with meiosis II non-disjunction of sex chromosomes. Overall, confounding factors appeared to exert a more important effect than exposure to styrene on numerical chromosome alterations in sperm nuclei of subjects selected for normal semen parameters.  相似文献   

5.
6.
D Rose  W Thomas  C Holm 《Cell》1990,60(6):1009-1017
To understand better the similarities and differences between meiosis and mitosis, we examined the meiotic role of DNA topoisomerase II, an enzyme that is required mitotically to disentangle sister chromatids at the time of chromosome segregation. In meiosis, we found that topoisomerase II is required only at the time of nuclear division. When cold-sensitive top2 mutants are induced to sporulate at the restrictive temperature, they undergo premeiotic DNA synthesis and commitment to meiotic levels of recombination but fail to complete the first meiotic nuclear division. The introduction of a mutation blocking recombination relieves the requirement for topoisomerase II in meiosis I. These results suggest that topoisomerase II is required at the time of chromosome segregation in meiosis I for the resolution of recombined chromosomes.  相似文献   

7.
In meiosis I, two chromatids move to each spindle pole. Then, in meiosis II, the two are distributed, one to each future gamete. This requires that meiosis I chromosomes attach to the spindle differently than meiosis II chromosomes and that they regulate chromosome cohesion differently. We investigated whether the information that dictates the division type of the chromosome comes from the whole cell, the spindle, or the chromosome itself. Also, we determined when chromosomes can switch from meiosis I behavior to meiosis II behavior. We used a micromanipulation needle to fuse grasshopper spermatocytes in meiosis I to spermatocytes in meiosis II, and to move chromosomes from one spindle to the other. Chromosomes placed on spindles of a different meiotic division always behaved as they would have on their native spindle; e.g., a meiosis I chromosome attached to a meiosis II spindle in its normal fashion and sister chromatids moved together to the same spindle pole. We also showed that meiosis I chromosomes become competent meiosis II chromosomes in anaphase of meiosis I, but not before. The patterns for attachment to the spindle and regulation of cohesion are built into the chromosome itself. These results suggest that regulation of chromosome cohesion may be linked to differences in the arrangement of kinetochores in the two meiotic divisions.  相似文献   

8.
Xkid chromokinesin is required for chromosome alignment on the metaphase plate of spindles formed in Xenopus laevis egg extracts. We have investigated the role of Xkid in Xenopus oocyte meiotic maturation, a progesterone-triggered process that reinitiates the meiotic cell cycle in oocytes arrested at the G2/M border of meiosis I. Here we show that Xkid starts to accumulate at the time of germinal vesicle breakdown and reaches its largest quantities at metaphase II in oocytes treated with progesterone. Both germinal vesicle breakdown and spindle assembly at meiosis I can occur normally in the absence of Xkid. But Xkid-depleted oocytes cannot reactivate Cdc2/cyclin B after meiosis I and, instead of proceeding to meiosis II, they enter an interphase-like state and undergo DNA replication. Expression of a Xkid mutant that lacks the DNA-binding domain allows Xkid-depleted oocytes to complete meiotic maturation. Our results show that Xkid has a role in the meiotic cell cycle that is independent from its role in metaphase chromosome alignment.  相似文献   

9.
The objective of the current study was to investigate the ability of orthovanadate to induce aneuploidy in mouse sperm and micronuclei in mouse bone marrow cells at the same dose levels. The BrdU-incorporation assay was performed to test if the chemical treatment altered the duration of the meiotic divisions. It was found that orthovanadate (25mg/kg bw) treatment did not cause meiotic delay. To determine the frequencies of hyperhaploid and diploid sperm, male mice were treated by intraperitoneal (i.p.) injection with 5, 15 or 25mg/kg bw orthovanadate and sperm were sampled from the Caudae epididymes 22 days later. Fluorescence in situ hybridization (FISH) was performed with DNA-probes for chromosomes 8, X or Y. Significant increases in the frequencies of total hyperhaploid sperm (p<0.01) were found with 15 and 25mg/kg bw orthovanadate, indicating induced non-disjunction during male meiosis. The dose-response was described best by a linear equation. Orthovanadate did not significantly increase the frequencies of diploid sperm at any of the three doses tested, indicating that no complete meiotic arrest occurred. Orthovanadate was investigated also by the micronucleus test at i.p. doses of 1, 5, 15 or 25mg/kg bw, followed by bone marrow sampling 24h after treatment. None of the orthovanadate doses caused a significant increase in the rates of micronuclei (MN). Since the results show that orthovanadate induced non-disjunction during male meiosis without an accompanying induction of MN in bone marrow erythrocytes under the present experimental conditions and doses, it is concluded that male germ cells (meiosis) are more sensitive to the aneugenic effects of orthovanadate than somatic cells (mitosis). However, induction of micronuclei was reported in the literature with orthovanadate, vanadylsulfate and ammonium metavanadate, which contradicts the notion that vanadium compounds might be unique germ cell aneugens.  相似文献   

10.
Aurora-C was first identified during screening for kinases expressed in mouse sperm and eggs. Herein, we report for the first time the precise subcellular localization of endogenous Aurora-C during male meiotic division. The localization of Aurora-C was analyzed by immunofluorescence staining on chromosome spreads of mouse spermatocytes or in squashed seminiferous tubules. Aurora-C was first detected at clusters of chromocenters in diplotene spermatocytes and was concentrated at centromeres in metaphase I and II. Interestingly, Aurora-C was also found along the chromosome axes, including both the regions of centromeres and the chromosome arms in diakinesis. During the anaphase I/telophase I and anaphase II/telophase II transitions, Aurora-C was relocalized to the spindle midzone and midbody. A similar distribution pattern was also observed for Aurora-B during male meiotic divisions. Surprisingly, we detected no Aurora-C in mitotic spermatogonia. Furthermore, immunoprecipitation analyses revealed that INCENP associated with Aurora-C in the male testis. We propose that INCENP recruits Aurora-C (or some other factor(s) recruit INCENP and Aurora-C) to meiotic chromosomes, while Aurora-C may either work alone or cooperate with Aurora-B to regulate chromosome segregation during male meiosis.  相似文献   

11.
Homologous pairing and chromosome dynamics in meiosis and mitosis   总被引:2,自引:0,他引:2  
Pairing of homologous chromosomes is an essential feature of meiosis, acting to promote high levels of recombination and to ensure segregation of homologs. However, homologous pairing also occurs in somatic cells, most regularly in Dipterans such as Drosophila, but also to a lesser extent in other organisms, and it is not known how mitotic and meiotic pairing relate to each other. In this article, I summarize results of recent molecular studies of pairing in both mitosis and meiosis, focusing especially on studies using fluorescent in situ hybridization (FISH) and GFP-tagging of single loci, which have allowed investigators to assay the pairing status of chromosomes directly. These approaches have permitted the demonstration that pairing occurs throughout the cell cycle in mitotic cells in Drosophila, and that the transition from mitotic to meiotic pairing in spermatogenesis is accompanied by a dramatic increase in pairing frequency. Similar approaches in mammals, plants and fungi have established that with few exceptions, chromosomes enter meiosis unpaired and that chromosome movements involving the telomeric, and sometimes centromeric, regions often precede the onset of meiotic pairing. The possible roles of proteins involved in homologous recombination, synapsis and sister chromatid cohesion in homolog pairing are discussed with an emphasis on those for which mutant phenotypes have permitted an assessment of effects on homolog pairing. Finally, I consider the question of the distribution and identity of chromosomal pairing sites, using recent data to evaluate possible relationships between pairing sites and other chromosomal sites, such as centromeres, telomeres, promoters and heterochromatin. I cite evidence that may point to a relationship between matrix attachment sites and homologous pairing sites.  相似文献   

12.
Meiosis is the process which produces haploid gametes from diploid precursor cells. This reduction of chromosome number is achieved by two successive divisions. Whereas homologs segregate during meiosis I, sister chromatids segregate during meiosis II. To identify novel proteins required for proper segregation of chromosomes during meiosis, we applied a high-throughput knockout technique to delete 87 S. pombe genes whose expression is upregulated during meiosis and analyzed the mutant phenotypes. Using this approach, we identified a new protein, Dil1, which is required to prevent meiosis I homolog non-disjunction. We show that Dil1 acts in the dynein pathway to promote oscillatory nuclear movement during meiosis.  相似文献   

13.
The frequency and type of chromosome abnormalities were analyzed in 917 female pronuclei in Syrian hamster eggs fertilized by human sperm. Analysis at this stage allows detection of errors which have occurred during meiosis I and II. The chromosomes were Q-banded to identify individual chromosomes and detect subtle alterations. Thirty-three (3.6%) of the hamster egg complements were abnormal: 19 (2.1%) were hypohaploid, seven (0.76%) were hyperhaploid, two (0.2%) had double aneuploidy, and five (0.5%) had a structural chromosome abnormality. Since there were significantly more hypohaploid than hyperhaploid complements, a conservative estimate of aneuploidy can be derived by doubling the frequency of hyperhaploid complements. Thus a minimal estimate of aneuploidy (single, 1.5%, and double, 0.2%) is 1.7% and a minimal estimate of the total frequency of abnormalities is 2.2%. All chromosome groups were represented among the aneuploid complements suggesting that all chromosomes are susceptible to non-disjunction.  相似文献   

14.
It was previously shown that more than half of the human oocytes obtained from IVF patients of advanced reproductive age are aneuploid, due to meiosis I and meiosis II errors. The present paper further confirms that 61.8% of the oocytes tested by fluorescent probes specific for chromosomes 13, 16, 18, 21 and 22 are abnormal, representing predominantly chromatid errors, which are the major source of aneuploidy in the resulting embryos. Almost half of the oocytes with meiosis I errors (49.3%) are prone to sequential meiosis II errors, which may lead to aneuploidy rescue in 30.8% of the cases. Half of the detected aneuploidies (49.8%) are of complex nature with involvement of two or more chromosomes, or the same chromosome in both meiotic divisions. The aneuploidy rates for individual chromosomes are different, with a higher prevalence of chromosome 21 and 22 errors. The origin of aneuploidy for the individual chromosomes is also not random, with chromosome 16 and 22 errors originating more frequently in meiosis II, and chromosome 18, 13 and 21 errors in meiosis I. There is an age dependence not only for the overall frequency of aneuploidies, but also for each chromosome error, aneuploidies originating from meiosis I, meiosis II, and both meiosis I and meiosis II errors, as well as for different types of aneuploidies. The data further suggest the practical relevance of oocyte aneuploidy testing for detection and avoidance from transfer of the embryos deriving from aneuploid oocytes, which should contribute significantly to the pregnancy outcomes of IVF patients of advanced reproduction age.  相似文献   

15.
Meiotic segregation, recombination, and aneuploidy was assessed for sperm from a t(1;10)(p22.1;q22.3) reciprocal translocation carrier, by use of two multicolor FISH methods. The first method utilized three DNA probes (a telomeric and a centromeric probe on chromosome 1 plus a centromeric probe on chromosome 10) to analyze segregation patterns, in sperm, of the chromosomes involved in the translocation. The aggregate frequency of sperm products from alternate and adjacent I segregation was 90.5%, and the total frequency of normal and chromosomally balanced sperm was 48.1%. The frequencies of sperm products from adjacent II segregation and from 3:1 segregation were 4.9% and 3.9%, respectively. Reciprocal sperm products from adjacent I segregation deviated significantly from the expected 1:1 ratio (P < .0001). Our assay allowed us to evaluate recombination events in the interstitial segments at adjacent II segregation. The frequencies of sperm products resulting from interstitial recombination in chromosome 10 were significantly higher than those resulting from interstitial recombination in chromosome 1 (P < .006). No evidence of an interchromosomal effect on aneuploidy was found by use of a second FISH method that simultaneously utilized four chromosome-specific DNA probes to quantify the frequencies of aneuploid sperm for chromosomes X, Y, 18, and 21. However, a significant higher frequency of diploid sperm was detected in the translocation carrier than was detected in chromosomally normal and healthy controls. This study illustrates the advantages of multicolor FISH for assessment of the reproductive risk associated with translocation carriers and for investigation of the mechanisms of meiotic segregation of chromosomes.  相似文献   

16.
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.  相似文献   

17.
To examine interindividual differences in sperm chromosome aneuploidy, repeated semen specimens were obtained from a group of ten healthy men, aged 20-21 at the start of the study, and analyzed by multi-color fluorescence in situ hybridization (FISH) analysis to determine the frequencies of sperm aneuploidy for chromosomes X, Y, 8, 18 and 21 and of diploidy. Semen samples were obtained three times over a five-year period. Statistical analysis examining the stability of sperm aneuploidy over time by type and chromosome identified two men who consistently exhibited elevated frequencies of sperm aneuploidy (stable variants): one with elevated disomy 18 and one with elevated MII diploidy. Differences among frequencies of aneuploidy by chromosome were also seen. Overall, disomy frequencies were lower for chromosome X, 8 and 18 than for chromosomes 21 or Y and for XY aneuploidy. The frequency of chromosome Y disomy did not differ from XY sperm frequency. Also, the frequency of meiosis I (XY) and II (YY + XX) sex chromosome errors did not differ in haploid sperm, but the frequency of MII errors was lower than MI errors in diploid sperm. Frequencies of sperm aneuploidy were similar between the first sampling period and the second, two years later. However, the frequency of some types of aneuploidy (XY, disomy Y, disomy 8, total autosomal disomies, total diploidy, and subcategories of diploidy) increased significantly between the first sampling period and the last, five years later, while others remained unchanged (disomy X, 21 and 18). These findings confirm inter-chromosome differences in the frequencies of disomy and suggest that some apparently healthy men exhibit consistently elevated frequencies of specific sperm aneuplodies. Furthermore, time/age-related changes in sperm aneuploidy may be detected over as short a period as five years in a repeated-measures study.  相似文献   

18.
Q Shi  T E Schmid  I Adler 《Mutation research》1999,441(2):181-190
Griseofulvin (GF) was tested in male mouse germ cells for the induction of meiotic delay and aneuploidy. Starved mice were orally treated with 500, 1000 and 2000 mg/kg of GF in corn oil and testes were sampled 22 h later for meiotic delay analysis and chromosome counting in spermatocytes at the second meiotic metaphase (MMII). A dose-related increase in meiotic delay by dose-dependently arresting spermatocytes in first meiotic metaphase (MMI) or/and prolonging interkinesis was observed. Hyperhaploid MMII cells were not significantly increased. Sperm were sampled from the Caudae epididymes 22 days after GF-treatment of the males for three-color fluorescence in situ hybridization (FISH). The frequencies of diploidies were 0.01-0.02% in sperm of the solvent control animals and increased dose-dependently to 0.03%, 0.068% and 0.091%, respectively, for 500, 1000 and 2000 mg/kg of GF. The frequencies of disomic sperm were increased significantly above the controls in all GF-treated groups but showed no dose response. The data for individual classes of disomic sperm indicated that MII was more sensitive than MI to GF-induced non-disjunction in male mice. A comparison of the present data from male mice and literature data from female mice suggests that mouse oocytes are more sensitive than mouse spermatocytes to GF-induced meiotic delay and aneuploidy.  相似文献   

19.
The parental origin and the meiotic stage of non-disjunction have been determined in 139 Down syndrome patients with regular trisomy 21 and in their parents through the analysis of DNA polymorphism. The meiotic error is maternal in 91.60% cases and paternal in 8.39% of cases. Of the maternal cases, 72.41% were due to meiosis I errors (MMI) and 27.58% were due to meiosis II errors (MMII). Of the paternal cases, 45.45% were due to meiosis I (PMI) and 54.54% were due to meiosis II (PMII). The mean maternal ages were 31.6 +/- 5.3 (+/- SD) years in errors from MMI, 32.3 +/- 6.4 years in errors from MMII, 31.4 +/- 4.6 years in errors from PMI and 29.5 +/- 2.7 years in errors from PMII. No significant statistical differences were observed between maternal and paternal errors, further supporting the presence of a constant chromosome 21 non-disjunction error type.  相似文献   

20.
The purpose of this study was the evaluation of aneuploidy frequencies in the spermatozoa of two fathers (DP-4 and DP-5) who had children with Down syndrome (DS) of paternal origin and in whom a previous sperm analysis by fluoresence in situ hybridisation (FISH) had suggested a generalised tendency to meiotic non-disjunction. Sperm samples were simultaneously hybridised with FISH probes for chromosomes 4, 13 and 22. Disomy frequencies for each of the chromosomes and diploidy frequencies were compared with data obtained from nine control donors. Both DS fathers had a statistically significant increase in the frequency of disomy for chromosomes 13 and 22. DP-5 also had an increased frequency of diploid spermatozoa. Our data suggest that the two DS fathers have a generalised susceptibility to meiotic non-disjunction and that acrocentric chromosomes seem to be more sensitive to such disturbance in the meiotic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号