首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of circumsporozoite (CS) protein by Plasmodium falciparum sporozoites was investigated to identify factors regulating this process within infected Anopheles gambiae mosquitoes. The potential for sporozoites to release CS protein in vitro was not dependent upon their site-specific developmental stage (i.e., mature oocysts, hemolymph, salivary glands), their duration in the vector, or their exposure to mosquito-derived components such as salivary glands or hemolymph. The capacity of sporozoites to release CS protein was depressed by mosquito blood feeding during periods of sporozoite migration to the salivary glands, but the effect was only temporary and those sporozoites already in the glands were not affected. Free CS protein in the salivary glands was present in 93.3% of 45 infective mosquitoes. Sporozoites from these same, individual mosquitoes were also tested in vitro for CS protein release. In both cases, the amount of soluble CS protein increased as a function of sporozoite density but the total amount of CS protein per sporozoite became progressively less with increasing numbers of sporozoites. Further experiments showed that sporozoite contact with increasing amounts of soluble CS protein caused a down-regulation of CS protein release. Thus, a primary factor regulating the production and release of CS protein by sporozoites is their contact with soluble CS protein within the mosquito.  相似文献   

2.
Mice were protected against challenge with infective Sporozoites following immunization with X-ray irradiated Sporozoites. The immunity lasted at least 8 weeks. Mice immune against sporozoite challenge remained fully susceptible to challenge with erythrocytic stages. Immunization of mice with extracts of mosquito thorax failed to protect them, indicating that mosquito antigens were not directly responsible for the immunity observed in the basic experiments.  相似文献   

3.
The hemolymph volume of Anopheles stephensi adult female mosquitoes was determined by a radioisotope dilution technique. [carboxy-14C]Inulin was injected into the hemocoels of mosquitoes with a calibrated capillary needle. After sufficient time for thorough mixing, the labeled hemolymph was collected from groups of 50 mosquitoes by a centrifugation technique. Total hemolymph volume was calculated by a conventional formula for radioisotope dilution. The mean hemolymph volume of the newly emerged adult female mosquitoes was 336 nl/mosquito. The ratio of hemolymph volume to body weight was 0.25 μl/mg body wt. By 14 days after emergence, hemolymph volume had dropped to 190 nl/mosquito. Infection of mosquitoes with the rodent malaria parasite, Plasmodium berghei, had no significant effect on hemolymph volume of the mosquito.  相似文献   

4.
Malaria is transmitted to a mammalian host when the sporozoite stage of the Plasmodium parasite is injected by a mosquito vector. Sporozoites are unique in being able to interact with both hosts. Formed and released in the mosquito midgut, sporozoites bind to the salivary glands and invade their secretory cells. Once injected into the mammalian host, they home to the liver and invade hepatocytes. Recent work has shown that two sporozoite surface proteins, CS and TRAP, act in both hosts, perform multiple functions, and are each essential for the parasite at more than one step of its life cycle.  相似文献   

5.
A two-step HPLC purification procedure resulted in a factor from the stable fly that depolarizes the lumen-negative transepithelial voltage (V(t)) of the adult stable fly Malpighian tubule. When applied to tubules of the female mosquito, Aedes aegypti, this factor partially mimics the electrophysiological actions of the mosquito natriuretic factor (MNF). It also selectively increases active transepithelial Na transport by the mosquito Malpighian tubule. The blood meal causes a transient increase in hemolymph Na and Cl contents and hemolymph volume during the course of the 24-h post-feeding period. The level of a factor that is immunologically cross-reactive with the human atrial natriuretic peptide (ANP) increases more than 6-fold within 6h following a blood meal by the stable fly. The temporal pattern of the levels of the ANP-immunoreactive factor closely parallels the blood meal-induced rise and subsequent fall in hemolymph NaCl content and hemolymph volume, suggesting a functional correlation between the ANP-immunoreactive factor and the rate of NaCl and fluid loss from the hemolymph.  相似文献   

6.
Hemolymph phenoloxidase activity of sugar-fed and blood-fed females of Anopheles quadrimaculatus and Aedes aegypti showed similar characteristics. Phenoloxidase was present as an inactive proenzyme in both mosquito species and was partially activated during collection of the hemolymph. In both mosquito species, phenoloxidase activity was modulated by different buffers and activated phenoloxidase did not need Ca2+. Enzymatic activity was higher in the hemocytes than in the plasma in both mosquito species. Trypsin, laminarin, and blood-feeding on uninfected and Brugia malayi-infected jirds enhanced hemolymph phenoloxidase activity in both mosquito species. The appearance of hemolymph phenoloxidase activity was inhibited by p-nitrophenyl p′-guanidinobenzoate HCl, soybean trypsin inhibitor, ethylenediaminetetraacetic acid, diethyldithiocarbamic acid, saturated 1-phenyl-2-thiourea and reduced glutathione, but not by benzamidine in A. quadrimaculatus. The appearance of hemolymph phenoloxidase activity was inhibited by benzamidine, diethyldithiocarbamic acid, saturated 1-phenyl-2-thiourea, reduced glutathione, β-nitrophenyl p′-guanidinobenzoate and soybean trypsin inhibitor, but not by ethylenediaminetetraacetic acid in A. aegypti. It is suggested that in both mosquito species, blood-feeding and migration of sheathed microfilariae in the homocoel activated the prophenoloxidase in the hemolymph and caused the encapsulation and melanization of microfilarial sheaths and microfilariae of B. malayi.  相似文献   

7.
Hemolymph was collected from adult female Anopheles stephensi by centrifugation of incised mosquitoes. Approximately 0.1 muliter was collected from each recently emerged mosquito, although smaller amounts were recovered with increasing age of the mosquito. Determinations were made of the pH, osmotic pressure, and specific gravity of this hemolymph at various times during the life of the adult mosquito. The values obtained were within the ranges found for other insects. Hemolymph collected from mosquitoes fed on hamsters infected with Plasmodium berghei had different values than hemolymph from mosquitoes fed on noninfected hamsters. This probably was due to differences between the quality of these 2 types of blood meals, rather than to the direct effects of the malaria parasite on the infected mosquito itself.  相似文献   

8.
Sporozoites from all Plasmodium species analysed so far express the thrombospondin-related adhesive protein (TRAP), which contains two distinct adhesive domains. These domains share sequence and structural homology with von Willebrand factor type A-domain and the type I repeat of human thrombospondin (TSP). Increasing experimental evidence indicates that the adhesive domains bind to vertebrate host ligands and that TRAP is involved, through an as yet unknown mechanism, in the process of sporozoite motility and invasion of both mosquito salivary gland and host hepatocytes. We have generated transgenic P.berghei parasites in which the endogenous TRAP gene has been replaced by either P.falciparum TRAP (PfTRAP) or mutated versions of PfTRAP carrying amino acid substitutions or deletions in the adhesive domains. Plasmodium berghei sporozoites carrying the PfTRAP gene develop normally, are motile, invade mosquito salivary glands and infect the vertebrate host. A substitution in a conserved residue of the A-domain or a deletion in the TSP motif of PfTRAP impairs the sporozoites' ability to invade mosquito salivary glands. Notably, midgut sporozoites from these transgenic parasites are still able to infect mice. Midgut sporozoites carrying a mutation in the A-domain of PfTRAP are motile, while no gliding motility could be detected in sporozoites with a TSP motif deletion.  相似文献   

9.
Although cytolysis of invading organisms is an innate form of immunity used by invertebrates, so far the underlying mechanism remains less explored. The pupal hemolymph of the mosquito Armigeres subalbatus induces an activity that causes hemolysis of human red blood cells (HRBC). This hemolytic activity was inhibited by sialic acid (N-acetylneuraminic acid) and serine protease inhibitors. We purified the sialic acid-specific lectin(s) from the pupal hemolymph using formaldehyde-fixed HRBC and determined the sequence of the amino-terminal 19 amino acid residues. A polyclonal antibody produced against this N-terminal peptide clearly inhibited the hemolytic activity of the hemolymph in vitro, thus suggesting that the hemolysis of HRBC is caused by the lectin present in the mosquito hemolymph. We suggest that mosquitoes possess a cytolysis system.  相似文献   

10.
Malarial transmission to the human host is established by sporozoite infection of the liver. Sporozoites are released from the mosquito salivary glands and carried by the blood flow to the liver sinusoid. In the sinusoid, sporozoites leave the blood circulation by crossing the sinusoidal cell layer to infect hepatocytes, the site for their development into the erythrocyte-invasive forms. Traversal of the sinusoidal cell layer and subsequent hepatocyte infection are the most important events in sporozoite liver invasion, but the molecular basis of both events remains to be elucidated. The present review of sporozoite liver invasion focuses on recent advances in this topic obtained by application of reverse genetics. Sporozoites traverse host cells, rupturing the host cell membrane in the process. Three microneme proteins have important roles in this motility. Disruption of one of these genes abolishes or severely impairs cell traversal without affecting other types of invasive motility. Studies using these disruptant parasites indicate that cell-traversal ability is required for crossing the sinusoidal cell layer and accessing the hepatocytes for infection. This process is homologous to midgut epithelium penetration by the malarial ookinete, because identical or paralogous genes are critically involved in both processes. After arrival at the hepatocyte, the invasion mode of the sporozoites switches from cell traversal to hepatocyte infection.  相似文献   

11.
12.
Sporozoites are the infective form of malaria parasites which are transmitted from the mosquito salivary glands to a new host in a mosquito blood meal. The sporozoites develop inside the sporogonic oocyst and it is crucial for the continuation of the life cycle that the oocyst ruptures to release sporozoites. We recently described two Plasmodium Oocyst Rupture Proteins (ORP1 and ORP2), localized at the oocyst capsule, that are each essential for rupture of the oocysts. Both ORPs contain a histone fold domain implicated in the mechanism of oocyst rupture, possibly through the formation of a heterodimer between the two histone fold domains. To gain an understanding of the function of the different regions of the ORP2 protein, we generated deletion mutants. We monitored oocyst formation and rupture as well as sporozoites in the salivary gland. Our results show that different regions of ORP2 play independent roles in sporozoite egress. Deleting the N-terminal histone fold domain of ORP2 blocked sporozoite egress from the oocyst. Progressive deletions from the C-terminal resulted in no or significantly impaired sporozoite egress.  相似文献   

13.
In previous studies we have presented evidence for the role of peptides, isolated from heads of the mosquito Aedes aegypti, in stimulating fluid secretion by isolated Malpighian tubules. In the present study we conducted experiments to investigate whether these peptides are involved in hormone-mediated diuresis after a blood meal. In vivo experiments showed that the head was required to maintain diuresis after the blood meal. Whereas feeding on blood triggered a prompt diuresis in the intact mosquito, subsequent decapitation caused a gradual, not an abrupt, decline in urine excretion rate. Hemolymph collected from mosquitoes fed blood significantly stimulated fluid secretion in vitro by isolated Malpighian tubules, whereas hemolymph from unfed or blood-fed decapitated mosquitoes did not. These results indicate that a diuretic factor was released into the hemolymph after a blood meal. This factor was not present in the hemolymph of decapitated females. We identified the head as a source of diuretic factors. Peptides isolated from a head extract by high-performance liquid chromatography, when injected into the hemocoel of blood-fed decapitated mosquitoes, triggered diuresis in vivo and also stimulated fluid secretion in isolated Malpighian tubules. These studies support the hypothesis that the head is a storage site for diuretic peptides that may be released after a blood meal to control diuresis.  相似文献   

14.
Determinations were made of carbohydrates in hemolymph collected from adult female mosquitoes (Anopheles stephensi). First the hemolymph was fractionated by extraction and precipitation procedures, after which qualitative and quantitative determinations of carbohydrates were made by thin layer chromatography. The most abundant sugars found in the hemolymph were glucose and trehalose, though maltose, glucuronic acid, and inositol could be found after the mosquitoes took blood meals. After the mosquitoes ingested a noninfected blood meal, their hemolymph sugar levels rose almost 4-fold. There was less of an increase following a blood meal infected with the rodent malaria parasite, Plasmodium berghei. Depletion of sugars in the hemolymph of infected mosquitoes may result from direct utilization of sugar by the malaria parasite developing within the mosquito.  相似文献   

15.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a high performance liquid chromatography coupled to a fluorescent detector (HPLC–FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA.  相似文献   

16.
Melanization of foreign targets in the mosquito, Anopheles gambiae, was studied using a model Sephadex bead system. A mosquito factor that was deposited on beads and prevented bead melanization (MPF) was purified. The N-terminal sequence of the factor identified it as lysozyme c-1 (Lys c-1). Gene silencing of Lys c-1 mediated by RNA interference resulted in a significant reduction in the MPF activity compared with controls. The purified Lys c-1 protein reduced dopachrome formation by mosquito hemolymph phenoloxidase in solution assays in vitro. In vivo, Lys c-1 might inhibit melanization of beads by blocking attachment of critical factors to the bead surface or by inhibiting PO directly. This work indicates that insect lysozymes can play unexpected roles in mediating melanization of foreign targets.  相似文献   

17.
Attempts were made to infect 4 species of New World monkeys (Saimiri boliviensis, Aotus nancymai, A. vociferans, A. azarae boliviensis) with Plasmodium gonderi, a malaria parasite of African monkeys. Sporozoites were obtained from Anopheles dirus or A. stephensi mosquitoes that fed on an infected rhesus monkey (Macaca mulatta). Inoculation of sporozoites was by injection of dissected sporozoites by either the intravenous or intrahepatic routes, or by mosquito bite. Liver biopsies done 7 or 8 days after sporozoite inoculation showed that hepatocytes of all 4 species of these New World monkeys supported exoerythrocytic stages of P. gonderi, but daily blood film examination during a 60-day observation period failed to detect blood stages of the parasite.  相似文献   

18.
Sporozoites are the most versatile of the invasive stages of the Plasmodium life cycle. During their passage within the mosquito vector and the vertebrate host, sporozoites display diverse behaviors, including gliding locomotion and invasion of, migration through and egress from target cells. At the end of the journey, sporozoites invade hepatocytes and transform into exoerythrocytic stages, marking the transition from the pre-erythrocytic to the erythrocytic part of the life cycle. This article discusses recent work, mostly done with rodent malaria parasites, that has contributed to a better understanding of the sporozoites' complex biology and which has opened up new avenues for future sporozoite research.  相似文献   

19.
Tyrosine and catecholamines have been implicated as substrates for the encapsulation reactions involved in the immune response of mosquitoes to microfilariae (mff). Identification and quantitation of tyrosine and catecholamines present in Aedes aegypti hemolymph plasma were accomplished by ion-pair high-pressure liquid chromatography with electrochemical detection at either +650 or +850 mV vs Ag/AgCl. Tyrosine, dopamine, and N-beta-alanyldopamine were detected in the hemolymph plasma of naive A. aegypti. Although no differences in these compounds were observed in hemolymph plasma from A. aegypti inoculated with Dirofilaria immitis mff, the chromatogram showed a single major peak (PI) (65 microM, expressed as dopamine equivalents) that was not present in naive hemolymph plasma. Saline-inoculated controls contained only 5% of the PI in immune reactive hemolymph plasma. A high concentration of PI (127 +/- 39 microM) was also detected after treatment of hemolymph plasma with mild alkaline conditions (pH 9.0), indicating that it is normally present as an electrochemically inert form in naive mosquitoes. High concentrations of PI were also detected in the naive hemolymph plasma from three other mosquito species, but no PI was found in A. trivittatus under any conditions. PI did not cochromatograph with any of the catecholamines commonly thought to be involved in immune responses of dipterans against metazoan parasites, suggesting that it may be a unique substrate for these reactions. The biological relevance of PI was evidenced by its appearance in the hemolymph plasma of two strains of D. immitis-inoculated A. aegypti.  相似文献   

20.
Frequent melanization of larvae of the nematode Dirofilaria immitis parasitizing the Malpighian tubules of the mosquito, Aedes sollicitans, has been observed. Melanized and nonmelanized larvae in the Malpighian tubules were examined using light and electron microscopy. The results indicate that the pattern of melanin deposition and the ultrastructural characteristics of the pigment around the worms are identical to that observed on nematodes which have undergone humoral melanization in other dipteran insects. In the Malpighian tubules, no contact between the intracellular melanized nematodes and the hemolymph or hemocytes was observed. The results suggest that the Malpighian tubules of this species of mosquito are capable of inducing a melanotic response to invading nematode parasites. It is proposed that this is an example of “humoral” melanization at an intracellular site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号