首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms and kinetics of NH(4)OH-KOH mixture pulping rice straw were studied. When aqueous ammonia was mixed with a small amount of caustic potash (ratio of 1:5), three distinct delignification phases were observed in the pulping process: a bulk delignification phase from the beginning of the cooking period to 100 degrees C, a supplementary delignification phase from 100 degrees C to 155 degrees C lasting a further 45 min, and a residual delignification phase until the end of the cooking period. There were two silica removal phases; the first phase was from the beginning of the cooking period to 100 degrees C and the second phase was from 100 degrees C to the end of the cooking period. The rate of delignification reaction was first order with respect to residual lignin and 0.3 order with respect to [OH(-)]. The silica removal was pseudo-first-order with respect to residual silica and 0.6 order with respect to [OH(-)]. The activation energies of the delignification and removal of silica reactions were 35.6 and 30.9 kJ/mol, respectively.  相似文献   

2.
Correlating the effect of pretreatment on the enzymatic hydrolysis of straw   总被引:4,自引:0,他引:4  
Avicell, Alkali-treated straw cellulose (ATSC), and wheat straw were ball-milled to reduce crystallinity; wheat straw was delignified by hot (120 degrees C) sodium hydroxide solutions of various concentrations. The physically and chemically pretreated cellulosic materials were hydrolyzed by the cellulases of Fusarium oxysporum strain F3. Enzymic hydrolysis data were fitted by the hyperbolic correlation of Holtzapple, which involves two kinetic parameters, the maximum conversion (X(max)), and the enzymic hydrolysis time corresponding to 50% of X(max) (t(1/2)). An empirical correlation between X(max) and cellulose crystallinity, lignin content, and degree of delignification has been found under our experimental conditions. Complete cellulose hydrolysis is shown to be possible at less than 60% crystallinity indices or less than 10% lignin content.  相似文献   

3.
A widespread and hitherto by far underexploited potential among ecologically diverse fungi to pretreat wheat straw and digestate from maize silage in the future perspective of using such lignocellulosic feedstock for fermentative bioenergy production was inferred from a screening of nine freshwater ascomycetes, 76 isolates from constructed wetlands, nine peatland isolates and ten basidiomycetes. Wheat straw pretreatment was most efficient with three ascomycetes belonging to the genera Acephala (peatland isolate) and Stachybotrys (constructed wetland isolates) and two white-rot fungi (Hypholoma fasciculare and Stropharia rugosoannulata) as it increased the amounts of water-extractable total sugars by more than 50 % and sometimes up to 150 % above the untreated control. The ascomycetes delignified wheat straw at rates (lignin losses between about 31 and 40 % of the initial content) coming close to those observed with white-rot fungi (about 40 to 57 % lignin removal). Overall, fungal delignification was indicated as a major process facilitating the digestibility of wheat straw. Digestate was generally more resistant to fungal decomposition than wheat straw. Nevertheless, certain ascomycetes delignified this substrate to extents sometimes even exceeding delignification by basidiomycetes. Total sugar amounts of about 20 to 60 % above the control value were obtained with the most efficient fungi (one ascomycete of the genus Phoma, the unspecific wood-rot basidiomycete Agrocybe aegerita and one unidentified constructed wetland isolate). This was accompanied by lignin losses of about 47 to 56 % of the initial content. Overall, digestate delignification was implied to be less decisive for high yields of fermentable sugars than wheat straw delignification.  相似文献   

4.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

5.
While many pretreatments attempt to improve the enzymatic digestibility of biomass by removing lignin, this study shows that improving the surface area accessible to cellulase is a more important factor for achieving a high sugar yield. Here we compared the pretreatment of switchgrass by two methods, cellulose solvent‐ and organic solvent‐based lignocellulose fractionation (COSLIF) and soaking in aqueous ammonia (SAA). Following pretreatment, enzymatic hydrolysis was conducted at two cellulase loadings, 15 filter paper units (FPU)/g glucan and 3 FPU/g glucan, with and without BSA blocking of lignin absorption sites. The hydrolysis results showed that the lignin remaining after SAA had a significant negative effect on cellulase performance, despite the high level of delignification achieved with this pretreatment. No negative effect due to lignin was detected for COSLIF‐treated substrate. SEM micrographs, XRD crystallinity measurements, and cellulose accessibility to cellulase (CAC) determinations confirmed that COSLIF fully disrupted the cell wall structure, resulting in a 16‐fold increase in CAC, while SAA caused a 1.4‐fold CAC increase. A surface plot relating the lignin removal, CAC, and digestibility of numerous samples (both pure cellulosic substrates and lignocellulosic materials pretreated by several methods) was also developed to better understand the relative impacts of delignification and CAC on glucan digestibility. Biotechnol. Bioeng. 2011; 108:22–30. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Kraft pulps, prepared from softwoods, and small chips of birch wood were treated with heme and tert-butyl hydroperoxide in aqueous solutions at reflux temperature. Analyses of treated pulps showed decreases in kappa number (a measure of lignin content) from about 36 to less than 2, with concomitant increases in brightness (80% increase in the better samples). Analyses of treated wood chips revealed selective delignification and removal of hemicelluloses. After 48 h of treatment, lignin losses from the wood chips approached 40%, and xylose/mannose (hemicellulose) losses approached 70%, while glucose (cellulose) losses were less than 10%. Examination of delignified chips by transmission electron microscopy showed that the removal of lignin occurred in a manner virtually indistinguishable from that seen after decay by white rot fungi. Various metalloporphyrins, which act as biomimetic catalysts, were compared to horseradish peroxidase and fungal manganese peroxidase in their abilities to oxidize syringaldazine in an organic solvent, dioxane. The metalloporphyrins and peroxidases behaved similarly, and it appeared that the activities of the peroxidases resulted from the extraction of heme into the organic phase, rather than from the activities of the enzymes themselves. We concluded that heme-tert-butyl hydroperoxide systems in the absence of a protein carrier mimic the decay of lignified tissues by white rot fungi.  相似文献   

7.
This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.  相似文献   

8.
Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.  相似文献   

9.
Despite evidence that lignin associates under both aqueous and organic media, the magnitude and nature of the underlying driving forces are still a matter of discussion. The present paper addresses this issue by examining both solution properties and size exclusion behaviour of lignins isolated from five different species of softwoods, as well as from the angiosperms Eucalyptus globulus and wheat straw. This investigation has used the recently described protocol for isolating enzymatic mild acidolysis lignin (EMAL), which offers lignin samples highly representative of the overall lignin present in the wood cell wall. The molecular weight distributions of these EMALs were found to be dependent upon the wood species from which they were isolated and upon the incubation conditions used prior to size exclusion chromatography. While the chromatograms of EMALs isolated from softwoods displayed a bimodal behaviour, the elution profiles of EMAL from E. globulus and straw were nearly unimodal. A marked tendency to dissociate prevailed under incubation at room temperature for all examined species with the exception of the straw lignin preparation; furthermore, lignin solutions incubated at 4 degrees C showed an associative behaviour manifested by an increase in the weight and number average molecular weights for some species. The extent of such association/dissociation, as well as the time needed for the process to reach completion, was also found to depend upon the wood species, i.e. lignins from softwoods were found to associate/dissociate to a greater extent than lignins from E. globulus and straw. The origin of such effects within the lignin structure is also discussed.  相似文献   

10.
Pan X  Sano Y 《Bioresource technology》2005,96(11):1256-1263
Fractionation of wheat straw was investigated using an atmospheric acetic acid process. Under the typical conditions of 90% (v/v) aqueous AcOH, 4% H(2)SO(4) (w/w, on straw), ratio of liquor to straw (L/S) 10 (v/w), pulping temperature 105 degrees C, and pulping time 3h, wheat straw was fractionated to pulp (cellulose), lignin and monosaccharides mainly from hemicellulose with yields of approximately 50%, 15% and 35%, respectively. Acetic acid pulp from the straw had an acceptable strength for paper and could be bleached to a high brightness over 85% with a short bleaching sequence. Acetic acid pulp was also a potential feedstock for fuels and chemicals. The acetic acid process separated pentose and hexose in wheat straw to a large extent. Most of the pentose (xylan) was dissolved, whereas the hexose (glucan) remained in the pulp. Approximately 30% of carbohydrates in wheat straw were hydrolyzed to monosaccharides during acetic acid pulping, of which xylose accounted for 70% and glucose for 12%. The acetic acid lignin from wheat straw showed relatively lower molecular weight and fusibility, which made the lignin a promising raw material for many products, such as adhesive and molded products.  相似文献   

11.
The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing woody biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively. Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen??one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed at 30°C have a lower density and compression strength and a tendency to expand in length after the pelletizing process compared to pellets pressed at 100°C. At low temperatures, surface extractives have a lubricating effect and reduce the friction in the press channel of a pellet mill while no such effect is observed at elevated temperatures. Fuel pellets made from extracted wheat straw have a slightly higher compression strength which might be explained by a better interparticle adhesion in the absence of hydrophobic surface waxes.  相似文献   

12.
Various ionic liquids have been identified as effective pretreatment solvents that can enhance the cellulose digestibility of lignocellulose by removing lignin, one of the main factors contributing to the recalcitrant nature of lignocellulose. 1-Butyl-3-methylimidazolium methylsulfate ([BMiM]MeSO(4)) is a potential delignification reagent, hence its application as a pretreatment solvent for sugarcane bagasse (SB) was investigated. The study also evaluated the benefit of an acid catalyst (i.e., H(2) SO(4)) and the effect of pretreatment conditions, which varied within a time and temperature range of 0-240 min and 50-150°C, respectively. The use of an acid catalyst contributed to a more digestible solid and a higher degree of delignification. However, the [BMiM]MeSO(4)-H(2) SO(4) combination failed to produce a fully digestible solid, as a maximum cellulose digestibility of 77% (w/w) was obtained at the optimum pretreatment condition of 125°C for 120 min. Furthermore, up to half of the lignin content could be extracted during pretreatment, while simultaneously extensive, sometimes complete, removal of xylan, the presence of which, also hampers cellulose digestibility. Hence, [BMiM]MeSO(4) has been identified an effective pretreatment solvent for SB as the application thereof both significantly improved digestibility, and simultaneously removed two of the main factors contributing to the recalcitrant nature of lignocellulose. As xylan and lignin have potential value as precursor chemicals, the existing process may in future be extended toward substrate fractionation, a biorefinery concept where value is added to all feedstock constituents.  相似文献   

13.
An unpolluted process of wheat straw fractionation by steam explosion coupled with ethanol extraction was studied. The wheat straw was steam exploded for 4.5 min with moisture of 34.01%, a pressure of 1.5 MPa without acid or alkali. Hemicellulose sugars were recovered by water countercurrent extraction and decolored with chelating ion exchange resin D412. The gas chromatography (GC) and high-performance liquid chromatography (HPLC) analysis results indicated that there were organic acids in the hemicellulose sugars and the ratio of monosaccharides to oligosaccharides was 1:9 and the main component, xylose, was 85.9% in content. The total recovery rate of hemicellulose was 80%. Water washed materials were subsequently extracted with ethanol. The optimum extraction conditions in this work were 40% ethanol, fiber/liquor ratio 1:50 (w/v), severity log(R)=3.657 (180 degrees C for 20 min), 0.1% NaOH. The lignin yield was 75% by acid precipitation and 85% ethanol solvent was recovered. The lignin was purified using Bj?rkman method. Infrared spectrometry (IR) results indicated that the lignin belonged to GSH (guaiacyl (G) syringyl (S) and p-hydroxyphenyl (H)) lignin and its purity rate reached 85.3%. The cellulose recovery rate was 94% and the results of electron spectroscopy for chemical analysis (ESCA) and infrared spectrometry (IR) showed that hemicellulose and lignin content decreased after steam explosion and ethanol extraction.  相似文献   

14.
Characteristics of degraded cellulose obtained from steam-exploded wheat straw   总被引:13,自引:0,他引:13  
The isolation of cellulose from wheat straw was studied using a two-stage process based on steam explosion pre-treatment followed by alkaline peroxide post-treatment. Straw was steamed at 200 degrees C, 15 bar for 10 and 33 min, and 220 degrees C, 22 bar for 3, 5 and 8 min with a solid to liquid ratio of 2:1 (w/w) and 220 degrees C, 22 bar for 5 min with a solid to liquid ratio of 10:1, respectively. The steamed straw was washed with hot water to yield a solution rich in hemicelluloses-derived mono- and oligosaccharides and gave 61.3%, 60.2%, 66.2%, 63.1%, 60.3% and 61.3% of the straw residue, respectively. The washed fibre was delignified and bleached by 2% H2O2 at 50 degrees C for 5 h under pH 11.5, which yielded 34.9%, 32.6%, 40.0%, 36.9%, 30.9% and 36.1% (% dry wheat straw) of the cellulose preparation, respectively. The optimum cellulose yield (40.0%) was obtained when the steam explosion pre-treatment was performed at 220 degrees C, 22 bar for 3 min with a solid to liquid ratio of 2:1, in which the cellulose fraction obtained had a viscosity average degree of polymerisation of 587 and contained 14.6% hemicelluloses and 1.2% klason lignin. The steam explosion pre-treatment led to a significant loss in hemicelluloses and alkaline peroxide post-treatment resulted in substantial dissolution of lignin and an increase in cellulose crystallinity. The six isolated cellulose samples were further characterised by FT-IR and 13C-CP/MAS NMR spectroscopy and thermal analysis.  相似文献   

15.
The effect of delignification of forest biomass on enzymatic hydrolysis   总被引:1,自引:0,他引:1  
Yu Z  Jameel H  Chang HM  Park S 《Bioresource technology》2011,102(19):9083-9089
The effect of delignification methods on enzymatic hydrolysis of forest biomass was investigated using softwood and hardwood that were pretreated at an alkaline condition followed by sodium chlorite or ozone delignification. Both delignifications improved enzymatic hydrolysis especially for softwood, while pretreatment alone was found effective for hardwood. High enzymatic conversion was achieved by sodium chlorite delignification when the lignin content was reduced to 15%, which is corresponding to 0.30-0.35 g/g accessible pore volume, and further delignification showed a marginal effect. Sample crystallinity index increased with lignin removal, but it did not show a correlation with the overall carbohydrate conversion of enzymatic hydrolysis.  相似文献   

16.
Selective solvent delignification for fermentation enhancement   总被引:1,自引:0,他引:1  
Cellulose and hemicellulose in renewable biomass resources such as cornstover and wheat straw have been examined as substrates for the production of ethanol. A mixed culture of selected strains of Clostridium thermocellum and Clostridium thermosaccharolyticum are used to accomplish both the hydrolysis and fermentation of these carbohydrates in a single step. However, lignin and related phenolic materials are shown to diminish the rate, extent, and yield at which these carbohydrates can be utilized for ethanol production. In order to overcome this problem, a selective solvent pretreatment with alkaline-ethanol-water mixtures was examined for the delignification of cellulosic biomass under conditions where very little loss of fermentable carbohyrates results. Under optimal conditions, up to 67% of the initial lignin in cornstover can be extracted while 95% of the alpha-cellulose and pentosan carbohydrates remain insoluble. Subsequent mixed culture fermentation of the treated material has shown a 400% increase in the rate of degradation and greater than 85% utilization of the substrate. The effects of various extraction parameters on delignification kinetics and subsequent fermentation performance are discussed.  相似文献   

17.
汽爆秸秆漆酶协同作用提取木质素   总被引:2,自引:0,他引:2  
组分分离是秸秆炼制的关键技术。本文建立了汽爆耦合漆酶协同作用工艺,研究其对秸秆物理形态、化学组成以及木质素碱提取过程的影响。研究结果表明汽爆破坏秸秆表面致密结构,提高比表面积,促进漆酶对秸秆木质素的氧化作用;红外分析表明,漆酶破坏了汽爆秸秆中半纤维素酯键,且愈创木基吸收峰减弱,漆酶削弱了木质素与纤维素间相互作用;汽爆漆酶协同作用后的秸秆木质素提取率提高约20%(70℃,120 min)。Nuclei Growth模型分析温和条件下秸秆木质素提取过程,动力学结果表明,汽爆漆酶协同预处理增加了汽爆秸秆木质素碱提过程中反应起始作用位点,并提高了该过程对温度的敏感性。汽爆-漆酶协同预处理是一种有效的分离木质素的方法,将在木质纤维素原料的生物炼制中发挥重要作用。  相似文献   

18.
The pulping of wheat straw with dimethyl formamide was studied in order to investigate the effects of the cooking variables (temperature (190 degrees C, 200 degrees C, and 210 degrees C) and time (120 min, 150 min, and 180 min) and organic solvent ratio (30%, 50%, and 70%) dimethyl formamide (DMF+water) value) on the degradation of cellulose and degree of polymerization (DP) of organosolv pulp. The SCAN viscosity was applied to estimating the extent of cellulose degradation produced by cooking condition and then, it was compared with Kraft pulp at equal Kappa number. Response of pulp and handsheets properties to the process variables were analyzed using statistical software (MINITAB 14). The process variables (cooking temperature and cooking time) must be set at low variables with high DMF ratio in order to ensure a high yield and high SCAN viscosity. Also, pulps with high mechanical properties can be acceptably obtained at 210 degrees C for 150 min with 50% DMF. Generally, the cooking temperature was a significant factor while the cooking time and DMF ratio had a smaller role. By the comparison of Kraft and organosolv pulp, it can be resulted that DMF basically had improvement role on reducing of cellulose degradation by reason of high SCAN viscosity of organosolv pulp than Kraft pulp under equal kappa number and, scanning electron microscopy (SEM) of obtained pulp. Consequently, the protective action of organic solvent on non-cellulosic polysaccharides of wheat straw against degradation under Kraft pulping conditions was pointed as a main reason of the fairly high yield of organosolv pulps.  相似文献   

19.
Approximately one-half of the lignin and most of the hemicellulose present in agricultural residues such as wheat straw and corn stover are solubilized when the residue is treated at 25 degrees C in an alkaline solution of hydrogen peroxide. The delignification reaction is most efficient when the ratio of hydrogen peroxide to substrate is at least 0.25 (w/w) and the pH is 11.5. The supernatant fraction from a given pretreatment, after addition of makeup peroxide and readjustment of the pH, can be recycled to treat at least six additional batches of substrate, resulting in a substantial concentration of hemicellulose and soluble lignin degradation products. Hydrolysis of the insoluble fraction with Trichoderma reesei cellulase after alkaline peroxide treatment yields glucose with almost 100% efficiency, based upon the cellulose content of the residue before treatment. These data indicate that alkaline peroxide pretreatment is a simple and efficient method for enhancing the enzymatic digestibility of lignocellulosic crop residues to levels approaching the theoretical maximum.  相似文献   

20.
Aims: To screen and characterize a novel fungus with powerful and selective delignification capability on wheat straw. Methods and Results: A fungus capable of efficient delignification under solid‐state fermentation (SSF) conditions on wheat straw was screened. After 5 days of incubation, 13·07% of the lignin was removed by fungal degradation, and 7·62% of the holocellulose was lost. Furthermore, 46·53% of the alkali lignin was removed after 2 days of liquid fermentation. The fungus was identified as Fusarium concolor based on its morphology and an analysis of its 18S rDNA gene sequence. The molecular weight distribution of lignin was evaluated by gel permeation chromatography. Enzyme assay indicated that the fungus produced laccase, cellobiose dehydrogenase, xylanase and cellulase during the incubation period. Intracellular lignin peroxidase, manganese peroxidase and laccase were produced during liquid fermentation. Conclusions: We have successfully screened a fungus, F. concolor, which can efficiently degrade the lignin of wheat straw, with slight damage to the cellulose, after 5 days of SSF. Significance and Impact of the Study: The newly isolated strain could be used in pretreatment of lignocellulose materials prior to biopulping, bioconversion into fuel and substrates for the chemical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号