首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model bilayer systems from individual purified chloroplast thylakoid membrane lipids, from reconstituted mixtures of these purified lipids, and from leaf total polar lipid extracts have been prepared in water, and the longitudinal relaxation times (T's1) of the individual carbon atoms of the fatty acyl chains measured by 13C-NMR spectroscopy. The T's1 increasing distance of the carbon atoms from the polar headgroups in all cases, and as the results from each of the preparations are similar, all can be used as models of chloroplast membrane bilayers. Relaxation time measurements on intact chloroplast thylakoid membranes indicate the presence of chlorophyll resonances in the 13C-NMR spectrum of the membrane.  相似文献   

2.
Ferredoxin isolated from Halobacterium of the Dead Sea (HFd) was found to be stable and retain its conformation in 4–0.5 M salt solutions. Reconstitution of the denatured protein to the oxidized form in 2H2O indicated that the resonances shifted to the 8–10 ppm region, which include 18 protons, are nonexchangeable -NH protons. The C2H and C4H resonances of His-119 were assigned in both oxidized and reduced HFd. pH titration curves of these resonances yielded a pKa for this His of 6.57 ± 0.1 and 6.65 ± 0.1 in oxidized and reduced HFd, respectively. pH titration curves, T1 relaxation times, and the temperature dependence of the chemical shift were obtained for resonances between 6 and 10 ppm of oxidized HFd. In oxidized HFd a paramagnetically shifted resonance was observed at 15 ppm with 1 H intensity, and an anti-Curie temperature dependence. In reduced HFd eight resonances each with 1 H intensity were shifted downfield by 10–50 ppm and one resonance with 1 H intensity was shifted upfield to ?6.8 ppm. Four of these resonances exhibited an anti-Curie temperature dependence, two exhibited a moderate Curie dependence, and three were temperature independent.  相似文献   

3.
《FEBS letters》1986,202(1):122-126
NMR spectroscopy is one of the few techniques which has the sensitivity to detect subtle changes to the surface chemistry of cells. It has previously been demonstrated that high resolution 1H NMR methods can distinguish tumour cells with the capacity to metastasise and this information appears to arise from a type of proteolipid in or attached to the plasma membrane. Here we report that the 1H NMR signal, which we have used to identify metastatic cells in rat tumours, is significantly reduced in intensity after cultured cells are treated with trypsin/EDTA. The long T2 relaxation value (⪢ 350 ms) observed in metastatic cells is absent after enzyme treatment. 2D scalar correlated NMR (COSY) spectra of these treated cells show that a cross peak normally associated with malignancy and metastatic disease is markedly reduced. These findings indicate that the plasma membrane lipid particle which generates the high resolution spectrum is directly affected by trypsin/EDTA. Alterations to the cell surface properties were also demonstrated in vivo since reduced numbers of metastases were observed in animals injected with enzyme-treated cells. The correlation between the absence of a long T2 relaxation value and the diminished numbers of metastases in animals suggests that the plasma membrane particle is involved in the metastatic process.  相似文献   

4.
Melittin, the major component of the honey bee venom, is a 26-residue hemolytic and membrane active peptide. Structures of melittin determined either in lipid environments by NMR or by use of X-ray demonstrated two helical regions at the N- and C-termini connected by a hinge or a bend at the middle. Here, we show that deletion of the hinge residues along with two C-terminal terminal Gln residues (Q25 and Q26), yielding a peptide analog of 19-residue or Mel-H, did not affect antibacterial activity but resulted in a somewhat reduced hemolytic activity. A diastereomer of Mel-H or Mel-dH containing d-amino acids [dV5, dV8, dL11 and dK16] showed further reduction in hemolytic activity without lowering antibacterial activity. We have carried out NMR structures, dynamics (H-D exchange and proton relaxation), membrane localization by spin labeled lipids, pulse-field-gradient (PFG) NMR and isothermal titration calorimetry (ITC) in dodecylphosphocholine (DPC) micelles, as a mimic to eukaryotic membrane, to gain insights into cell selectivity of these melittin analogs. PFG-NMR showed Mel-H and Mel-dH both were similarly partitioned into DPC micelles. ITC demonstrated that Mel-H and Mel-dH interact with DPC with similar affinity. The micelle-bound structure of Mel-H delineated a straight helical conformation, whereas Mel-dH showed multiple β-turns at the N-terminus and a short helix at the C-terminus. The backbone amide-proton exchange with solvent D2O demonstrated a large difference in dynamics between Mel-H and Mel-dH, whereby almost all backbone protons of Mel-dH showed a much faster rate of exchange as compared to Mel-H. Proton T1 relaxation had suggested a mobile backbone of Mel-dH peptide in DPC micelles. Resonance perturbation by paramagnetic lipids indicated that Mel-H inserted deeper into DPC micelles, whereas Mel-dH is largely located at the surface of the micelle. Taken together, results presented in this study demonstrated that the poor hemolytic activity of the d-amino acid containing analogs of antimicrobial peptides may be correlated with their flexible dynamics at the membrane surface.  相似文献   

5.
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein.  相似文献   

6.
Dynamic structures of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers induced in oriented lipid membranes, which are interacting with membrane-acting antimicrobial peptides (AMPs), magainin-2 and aurein-3.3, were explored by 31P and 2H solid-state NMR (ssNMR) spectroscopy. Various types of phospholipid systems, such as POPC-d31, POPC-d31/POPG, and POPC-d31/cholesterol, were investigated to understand the membrane disruption mechanisms of magainin-2 and aurein-3.3 peptides at various peptide-to-lipid (P:L) ratios. The experimental lineshapes of anisotropic 31P and 2H ssNMR spectra measured on these peptide-lipid systems were simulated reasonably well by assuming the presence of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers, in membranes. Furthermore, the observed decrease in the anisotropic frequency span of either 31P or 2H ssNMR spectra of oriented lipid bilayers, particularly when anionic POPG lipids are interacting with AMPs at high P:L ratios, can directly be explained by a thinned membrane surface model with fast lateral diffusive motions of lipids. The spectral analysis protocol we developed enables extraction of the lateral diffusion coefficients of lipids distributed on the curved surfaces of pores and thinned bilayers on a few nanometers scale.  相似文献   

7.
A nicked duplex decamer DNA with a PEG(6) tether   总被引:1,自引:1,他引:0       下载免费PDF全文
A dumbbell double-stranded DNA decamer tethered with a hexaethylene glycol linker moiety (DDSDPEG), with a nick in the centre of one strand, has been synthesised. The standard NMR methods, E.COSY, TOCSY, NOESY and HMQC, were used to measure 1H, 31P and T1 spectral parameters. Molecular modelling using rMD-simulated annealing was used to compute the structure. Scalar couplings and dipolar contacts show that the molecule adopts a right-handed B-DNA helix in 38 mM phosphate buffer at pH 7. Its high melting temperature confirms the good base stacking and stability of the duplex. This is partly attributed to the presence of the PEG6 linker at both ends of the duplex that restricts the dynamics of the stem pentamers and thus stabilises the oligonucleotide. The inspection of the global parameters shows that the linker does not distort the B-DNA geometry. The computed structure suggests that the presence of the nick is not disturbing the overall tertiary structure, base pair geometry or duplex base pairing to a substantial extent. The nick has, however, a noticeable impact on the local geometry at the nick site, indicated clearly by NMR analysis and reflected in the conformational parameters of the computed structure. The 1H spectra also show much sharper resonances in the presence of K+ indicating that conformational heterogeneity of DDSDPEG is reduced in the presence of potassium as compared to sodium or caesium ions. At the same time the 1H resonances have longer T1 times. This parameter is suggested as a sensitive gauge of stabilisation.  相似文献   

8.
Cardiolipins are essential for the integrity and the dynamics of the mitochondria membrane, where they exclusively exist in eukaryotes. Changes in cardiolipins membrane levels have been related to several cardiac health disorders. To evaluate cardiolipins impact on membrane properties a physico-chemical study was conducted using steady-state fluorescence anisotropy, dynamic light scattering and Nuclear Magnetic Resonance (1H and 31P NMR). Different binary and ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and a natural extract of bovine heart cardiolipin were used as models of mitochondrial membrane. The main transition temperatures, obtained by the first two techniques, revealed to be cardiolipins dependent. Cardiolipins also showed to act as a bidirectional regulator of membrane fluidity. 1H and 31P NMR results revealed that cardiolipins affects the conformation, mobility and structural order of the phospholipid molecules. According to 1H NMR results, cardiolipins disturbs the overall structure and packing order of membrane demonstrated with the decrease of the line broadening and shift of all resonances. The 31P NMR line shape analysis confirmed that, at distinct temperatures, different lipid phases coexist in the systems, and their type and quantitative distribution are cardiolipins dependent. In summary, cardiolipins presence/absence dramatically changes the membrane properties and has a major impact in the construction of a mitochondrial membrane model.  相似文献   

9.
Two peptides, RAWVAWR-NH2 and IVSDGNGMNAWVAWR-NH2, derived from human and chicken lysozyme, respectively, exhibit antimicrobial activity. A comparison between the L-RAWVAWR, D-RAWVAWR, and the longer peptide has been carried out in membrane mimetic conditions to better understand how their interaction with lipid and detergent systems relates to the reported higher activity for the all L-peptide. Using CD and 2D 1H NMR spectroscopy, the structures were studied with DPC and SDS micelles. Fluorescence spectroscopy was used to study peptide interactions with POPC and POPG vesicles and DOPC, DOPE, and DOPG mixed vesicle systems. Membrane-peptide interactions were also probed by ITC and DSC. The ability of fluorescein-labeled RAWVAWR to rapidly enter both E. coli and Staphylococcus aureus was visualized using confocal microscopy. Reflecting the bactericidal activity, the long peptide interacted very weakly with the lipids. The RAWVAWR-NH2 peptides preferred lipids with negatively charged headgroups and interacted predominantly in the solvent-lipid interface, causing significant perturbation of membrane mimetics containing PG headgroups. Peptide structures determined by 1H NMR indicated a well-ordered coiled structure for the short peptides and the C-terminus of the longer peptide. Using each technique, the two enantiomers of RAWVAWR-NH2 interacted in an identical fashion with the lipids, indicating that any difference in activity in vivo is limited to interactions not involving the membrane lipids.  相似文献   

10.
NMR studies of plastocyanin have centered on the ligands to the copper atom at the active site, particularly histidines-37 and -87. Heteronuclear (13C, 1H) J-connectivity spectroscopy has enabled cross assignment of 1H and 13C NMR resonances from the two copper-ligated histidines. In addition to providing assignments of the 13C resonances, the two-dimensional Fourier transform NMR results require the reversal of the original 1H NMR assignments to the ring protons of histidine-37. The line widths of the ring protons of histidine-87 are field-dependent leading to determination of the reduced lifetime of the proton on the Nδ atom (about 400 μs).  相似文献   

11.
1H NMR relaxation times (T1 and T2) in parenchyma tissue of apple can identify three populations of water with different relaxation characteristics. By following the uptake of Mn2+ ions in the tissue it is shown that the observed relaxation times originate from particular water compartments: the vacuole, the cytoplasm, and the cell wall/extracellular space.

Proton exchange between these compartments is controlled by the plasmalemma and tonoplast membranes. During the Mn2+ penetration experiment, conditions occur that cause the relaxation times of protons of cytoplasmic water to be much shorter than their residence time in the cytoplasm. Then the tonoplast permeability coefficient Pd for water can be calculated from the vacuolar T1 and T2 values to be 2.44 10-5 m·s-1.

  相似文献   

12.
A novel Gram stain-negative, catalase- and oxidase-positive, strictly aerobic bacterium, designated strain H50T, was isolated from an amphioxus breeding zone in the coastal region of the Yellow Sea, China. Cells were observed to be ovoid or short rods, lacked flagella and were found to contain bacteriochlorophyll a. Poly-beta-hydroxybutyrate was found to be accumulated. The temperature range for growth was determined to be 0–37 °C (optimum 28–37 °C). The halotolerance range for growth is 1–15 % NaCl (optimum 2–7 %). The pH range for growth is 6.0–8.0 (optimum 7.0). The major fatty acids were identified as C18:1ω7c and C16:0. The following polar lipids were found to be present: diphosphatidylglycerol, phosphatidylglycerol and a lipid. The predominant respiratory quinone was determined to be Q-10. DNA G+C content was determined to be 57.7 mol%. Strain H50T exhibited the highest 16S rRNA gene sequence similarity to Pelagicola litoralis DSM 18290T (96.1 %), Roseovarius mucosus DSM 17069T (95.8 %) and Roseovarius tolerans DSM 11457T (95.7 %). In the phylogenetic trees, strain H50T was clustered with the genus Roseovarius but not Pelagicola. On the basis of phenotypic, chemotaxonomic and genotypic data, strain H50T is considered to represent a novel species in the genus Roseovarius, for which the name Roseovarius marisflavi sp. nov. is proposed. The type strain is H50T (=CGMCC 1.10799T=JCM 17553T).  相似文献   

13.
Lead, an environmental toxin, is known to impair some of the functional properties of osteocalcin, a small protein (MW, 5700) active in bone mineralization and resorption. To investigate a possible mechanism of lead toxicity at the molecular level, we have studied the interaction of lead with osteocalcin using 43Ca and 1H NMR. The measured 43Ca NMR linewidth as well as longitudinal relaxation rate (1/T1) of 43CaCl2 progressively increased with increasing amounts of added osteocalcin. A titration measuring 43Ca linewidth as a function of [Ca2+]/[Osteocalcin] ratio could be fitted to a single metal binding site with a dissociation constant of u μM. The 43Ca 1/T1 of Ca-osteocalcin decreased in the presence of Pb2+ due to competitive displacement of Ca2+ by Pb2+. The magnitude of decrease in the effect of osteocalcin on 43Ca 1/T1 in the presence of Pb2+ was consistent with the existence of only one tight divalent cation binding site. An analysis of the NMR T1, data in osteocalcin solutions containing both Pb2+ and Ca2+ yielded a Pb-osteocalcin dissociation constant of about 2 nM. The 1H NMR spectra showed Pb-induced changes in the same aliphatic and aromatic resonances of osteocalcin that are also affected by Ca2+-binding, supporting interaction of Pb2+ at the Ca2+ site. However, the existence of significant differences between the Pb-osteocalcin and Ca-osteocalcin NMR spectra indicates some differences in the structures of the two complexes. Since Pb2+ inhibits the binding of osteocalcin to hydraxyapatite, the high affinity of Pb2+ for osteocalcin would indicate significant inactivation of osteocalcin even at submicromolar free lead levels. Pb2+-induced inactivation of osteocalcin could affect bone mineral dynamics and may be related to the observed inverse correlation between blood Pb2+-levels and stature and chest circumference observed in growing children.  相似文献   

14.
The transmembrane protein TatA is the pore forming unit of the twin-arginine translocase (Tat), which has the unique ability of transporting folded proteins across the cell membrane. This ATP-independent protein export pathway is a recently discovered alternative to the general secretory (Sec) system of bacteria. To obtain insight in the translocation mechanism, the structure and alignment in the membrane of the well-folded segments 2-45 of TatAd from Bacillus subtilis was studied here. Using solid-state NMR in bicelles containing anionic lipids, the topology and orientation of TatAd was determined in an environment mimicking the bacterial membrane. A wheel-like pattern, characteristic for a tilted transmembrane helix, was observed in 15N chemical shift /15N-1H dipolar coupling correlation NMR spectra. Analysis of this PISA wheel revealed a 14-16 residue long N-terminal membrane-spanning helix which is tilted by 17° with respect to the membrane normal. In addition, comparison of uniformly and selectively 15N-labeled TatA2-45 samples allowed determination of the helix polarity angle.  相似文献   

15.
Acholeplasma laidlawii strain A-EF22 was grown in a medium supplemented with 75 μm α-deuterated palmitic acid (16:0-d 2) and 75 μm α-deuterated oleic acid (18:1c-d 2), or with 150 μm 18:1c-d 2. The fatty acids were incorporated into the membrane lipids and 2H NMR spectra were recorded from intact membranes, total lipid extracts, and the combined glucolipid and neutral lipid fractions of a total lipid extract. The lipids in intact membranes form a bilayer structure up to at least 70 °C. The same result was obtained with membranes digested with pronase, which removes a large fraction of the membrane proteins. A reversed hexagonal liquid crystalline (HII) phase was formed below 70 °C by the total lipid extracts hydrated with 20 and 30% (w/w) water; in the presence of 40% (w/w) water only one of the extracts formed an HII phase below 70 °C. The HII phase was formed at higher temperatures with an increasing water content. However, only a lamellar liquid crystalline (L α ) phase was formed up to 70 °C by the total lipid extracts when the water concentrations were 50% (w/w) or higher. The temperature (T LH) for the L α to HII phase transition in the combined glucolipid and neutral lipid fractions was only 2–3 °C lower than for the total lipids, and the phospholipids thus have a very modest influence on the T LH value. Physiologically relevant concentrations of Ca2+ and Mg2+ ions did not affect the phase equilibria of total lipid extracts significantly. It is concluded from comparison with published data that the membrane lipids of the cell wall-less bacterium A. laidlawii have a smaller tendency to form reversed nonlamellar phases than the membrane lipids of three bacterial species surrounded by a cell wall. Received: 10 March 1997 / Accepted: 4 July 1997  相似文献   

16.
Well resolved 1H and 13C NMR spectra were obtained with normal and SV 40-transformed cell membranes. Estimation of the ratio of 13CT2 values of the normal to transformed cell membranes showed an increased intermolecular motion in the transformed cell membranes. The temperature dependence of the (CH2)n line in the 1H spectra in the temperature range 298–343 °K shows an activation energy for the lateral diffusion of the fluid phospholipid regions in the normal cell membranes while the transformed ones show practically no temperature dependence in this temperature range. The fluidity of the phospholipid region in the transformed cell membrane seems to be significantly higher than that observed in the normal cell material. These data support and extend the findings concerning the mobility of the concanavalin A binding/agglutinating sites on the surface of normal and virus-transformed cells and suggest further approaches to the study of the membrane alterations in tumor cells.  相似文献   

17.
The interactions between a drug and lipids may be critical for the pharmacological activity. We previously showed that the ability of a fluoroquinolone antibiotic, ciprofloxacin, to induce disorder and modify the orientation of the acyl chains is related to its propensity to be expelled from a monolayer upon compression [1]. Here, we compared the binding of ciprofloxacin on DPPC and DPPG liposomes (or mixtures of phospholipids [DOPC:DPPC], and [DOPC:DPPG]) using quasi-elastic light scattering and steady-state fluorescence anisotropy. We also investigated ciprofloxacin effects on the transition temperature (Tm) of lipids and on the mobility of phosphate head groups using Attenuated Total Reflection Fourier Transform Infrared-Red Spectroscopy (ATR-FTIR) and 31P Nuclear Magnetic Resonance (NMR) respectively. In the presence of ciprofloxacin we observed a dose-dependent increase of the size of the DPPG liposomes whereas no effect was evidenced for DPPC liposomes. The binding constants Kapp were in the order of 105 M− 1 and the affinity appeared dependent on the negative charge of liposomes: DPPG > DOPC:DPPG (1:1; M:M) > DPPC > DOPC:DPPC (1:1; M:M). As compared to the control samples, the chemical shift anisotropy (Δσ) values determined by 31P NMR showed an increase of 5 and 9 ppm for DPPC:CIP (1:1; M:M) and DPPG:CIP (1:1; M:M) respectively. ATR-FTIR experiments showed that ciprofloxacin had no effect on the Tm of DPPC but increased the order of the acyl chains both below and above this temperature. In contrast, with DPPG, ciprofloxacin induced a marked broadening effect on the transition with a decrease of the acyl chain order below its Tm and an increase above this temperature. Altogether with the results from the conformational analysis, these data demonstrated that the interactions of ciprofloxacin with lipids depend markedly on the nature of their phosphate head groups and that ciprofloxacin interacts preferentially with anionic lipid compounds, like phosphatidylglycerol, present at a high content in these membranes.  相似文献   

18.
The longitudinal (T 1), transverse (T 2), and singlet state (T s) relaxation times of the geminal backbone protons (CH2) of l-Leu-Gly-Gly were studied by NMR spectroscopy at 9.4 T in a bovine hide gelatin gel composed in D2O at 25 °C. Gelatin granules were dissolved in a hot solution of the tripeptide and then the solution was allowed to gel inside a flexible silicone tubing. With increases in gelatin content, the T 2 and T s of the CH2 protons correspondingly decreased (T s/T 2 ~ constant), while the change in T 1 was relatively small. The largest observed T s/T 1 value was 3.3 at 46 % w/v gelatin that was the lowest gelatin content examined. Stretching the tubing, and hence the gel, brought about anisotropic alignment of the constituents resulting in residual quadrupolar splitting of the resonance from D2O in 2H NMR spectra, and residual dipolar splitting of the CH2 resonance in 1H NMR spectra. WALTZ-16 decoupling during the relaxation intervals extended the singlet state relaxation time, but the efficacy diminished as the gels were stretched. Theoretically predicted T 1, T 2, and T s values, assuming intramolecular dipolar coupling as the only source of relaxation, were within the same order of magnitude as the experimentally observed values. Overall we showed that it is possible to observe a long-lived spin state in an anisotropic medium when T 2 is shorter than T 1 in the presence of non-zero residual dipolar couplings.  相似文献   

19.
The effect of deuteration on the 13C linewidths of U-13C, 15N 2D crystalline bacteriorhodopsin (bR) from Halobacterium salinarium, a 248-amino acid protein with seven-transmembrane (7TM) spanning regions, has been studied in purple membranes as a prelude to potential structural studies. Spectral doubling of resonances was observed for receptor expressed in 2H medium (for both 50:50% 1H:2H, and a more highly deuterated form) with the resonances being of similar intensities and separated by < 0.3 ppm in the methyl spectral regions in which they were readily distinguished. Line-widths of the methyl side chains were not significantly altered when the protein was expressed in highly deuterated medium compared to growth in fully protonated medium (spectral line widths were about 0.5 ppm on average for receptor expressed both in the fully protonated and highly deuterated media from the Cδ, Cγ1, and Cγ2 Ile 13C signals observed in the direct, 21-39 ppm, and indirect, 9-17 ppm, dimensions). The measured 13C NMR line-widths observed for both protonated and deuterated form of the receptor are sufficiently narrow, indicating that this crystalline protein morphology is suitable for structural studies. 1H decoupling comparison of the protonated and deuterated bR imply that deuteration may be advantageous for samples in which low power 1H decoupling is required.  相似文献   

20.
The conformation of a melittin—inhibitor complex was studied by solution NMR, solid-state NMR, and circular dichroism. In solution, binding was studied by titrating inhibitor against melittin in dimethyl sulfoxide, methanol, aqueous buffer, and dodecylphosphocholine micelles. The change in chemical shift of Trp19 resonances and the formation of a precipitate at 1:1 molar ratio indicated that the inhibitor was bound to melittin. Solid-state NMR also showed a change in chemical shift of two labeled carbons of melittin near Pro14 and a change in 1H T 1 relaxation times when complexed with inhibitor. Rotational resonance experiments of melittin labeled in the proline region indicated a change in conformation for melittin complexed with inhibitor. This observation was also supported by circular dichroism measurements, indicating a reduction in α-helical structure for increasing ratios of inhibitor bound to melittin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号