首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Images obtained from magnetic resonance imaging have helped to ascertain that both the cerebrospinal fluid (CSF) and brain move in a pulsatile manner within the cranium. However, these images are not able to reveal any quantitative information on the physiological forces that are associated with pulsatile motion. Understanding both the pressure and velocity flow field of CSF in the ventricles is important to help understand the mechanics of hydrocephalus. Four separate fluid structure interaction models of the ventricular system in the sagittal plane were created for this purpose. The first model was of a normal brain. The second and third models were pathological brain models with aqueductal stenosis at various locations along the fluid pathway. The fourth model was of a hydrocephalic brain. Results revealed the hydrodynamics of CSF pulsatile flow in the ventricles of these models. Most importantly, it has also revealed the different changes in CSF pulsatile hydrodynamics caused by the various locations of fluid flow obstructions.  相似文献   

2.
Solute transport through the brain is of major importance for the clearance of toxic molecules and metabolites, and it plays key roles in the pathophysiology of the central nervous system. This solute transport notably depends on the cerebrospinal fluid (CSF) flow, which circulates in the subarachnoid spaces, the ventricles and the perivascular spaces. We hypothesized that the CSF flow may be different in the perinatal period compared to the adult period. Using in vivo magnetic resonance imaging (MRI) and near‐infrared fluorescence imaging (NIRF), we assessed the dynamic of the CSF flow in rodents at different ages. By injecting a contrast agent into the CSF, we first used MRI to demonstrate that CSF flow gradually increases with age, with the adult pattern observed at P90. This observation was confirmed by NIRF, which revealed an increased CSF flow in P90 rats when compared with P4 rats not only at the surface of the brain but also deep in the brain structures. Lastly, we evaluated the exit routes of the CSF from the brain. We demonstrated that indocyanine green injected directly into the striatum spread throughout the parenchyma in adult rats, whereas it stayed at the injection point in P4 rats. Moreover, the ability of CSF to exit through the nasal mucosa was increased in the adult rodents. Our results provide evidence that the perinatal brain has nonoptimal CSF flow and exit and, thus, may have impaired clean‐up capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

3.
The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.  相似文献   

4.
Cerebrospinal fluid (CSF) is a Newtonian fluid and can, therefore, be modelled using computational fluid dynamics (CFD). Previous modelling of the CSF has been limited to simplified geometric models. This work describes a geometrically accurate three dimensional (3D) computational model of the human ventricular system (HVS) constructed from magnetic resonance images (MRI) of the human brain. It is an accurate and full representation of the HVS and includes appropriately positioned CSF production and drainage locations. It was used to investigate the pulsatile motion of CSF within the human brain. During this investigation CSF flow rate was set at a constant 500 ml/day, to mimic real life secretion of CSF into the system, and a pulsing velocity profile was added to the inlets to incorporate the effect of cardiac pulsations on the choroid plexus and their subsequent influence on CSF motion in the HVS. Boundary conditions for the CSF exits from the ventricles (foramina of Magendie and Lushka) were found using a “nesting” approach, in which a simplified model of the entire central nervous system (CNS) was used to examine the effects of the CSF surrounding the ventricular system (VS). This model provided time varying pressure data for the exits from the VS nested within it. The fastest flow was found in the cerebral aqueduct, where a maximum velocity of 11.38 mm/s was observed over five cycles. The maximum Reynolds number recorded during the simulation was 15 with an average Reynolds number of the order of 0.39, indicating that CSF motion is creeping flow in most of the computational domain and consequently will follow the geometry of the model. CSF pressure also varies with geometry with a maximum pressure drop of 1.14 Pa occurring through the cerebral aqueduct. CSF flow velocity is substantially slower in the areas that are furthest away from the inlets; in some areas flow is nearly stagnant.  相似文献   

5.
The fluid that resides within cranial and spinal cavities, cerebrospinal fluid (CSF), moves in a pulsatile fashion to and from the cranial cavity. This motion can be measured hy magnetic resonance imaging (MRI) and may he of clinical importance in the diagnosis of several brain and spinal cord disorders such as hydrocephalus, Chiari malformation, and syringomyelia. In the present work, a geometric and hydrodynamic characterization of an anatomically relevant spinal canal model is presented. We found that inertial effects dominate the flow field under normal physiological flow rates. Along the length of the spinal canal, hydraulic diameter was found to vary significantly from 5 to 15 mm. The instantaneous Reynolds number at peak flow rate ranged from 150 to 450, and the Womersle number ranged from 5 to 17. Pulsatile flow calculations are presented for an idealized geometric representation of the spinal cavity. A linearized Navier-Stokes model of the pulsatile CSF flow was constructed based on MRI flow rate measurements taken on a healthy volunteer. The numerical model was employed to investigate effects of cross-sectional geometry and spinal cord motion on unsteady velocity, shear stress, and pressure gradientfields. The velocity field was shown to be blunt, due to the inertial character of the flow, with velocity peaks located near the boundaries of the spinal canal rather than at the midpoint between boundaries. The pressure gradient waveform was found to be almost exclusively dependent on the flow waveform and cross-sectional area. Characterization of the CSF dynamics in normal and diseased states may be important in understanding the pathophysiology of CSF related disorders. Flow models coupled with MRI flow measurements mnay become a noninvasive tool to explain the abnormal dynamics of CSF in related brain disorders as well as to determine concentration and local distribution of drugs delivered into the CSF space.  相似文献   

6.
Cerebrospinal fluid (CSF) is a Newtonian fluid and can, therefore, be modelled using computational fluid dynamics (CFD). Previous modelling of the CSF has been limited to simplified geometric models. This work describes a geometrically accurate three dimensional (3D) computational model of the human ventricular system (HVS) constructed from magnetic resonance images (MRI) of the human brain. It is an accurate and full representation of the HVS and includes appropriately positioned CSF production and drainage locations. It was used to investigate the pulsatile motion of CSF within the human brain. During this investigation CSF flow rate was set at a constant 500 ml/day, to mimic real life secretion of CSF into the system, and a pulsing velocity profile was added to the inlets to incorporate the effect of cardiac pulsations on the choroid plexus and their subsequent influence on CSF motion in the HVS. Boundary conditions for the CSF exits from the ventricles (foramina of Magendie and Lushka) were found using a "nesting" approach, in which a simplified model of the entire central nervous system (CNS) was used to examine the effects of the CSF surrounding the ventricular system (VS). This model provided time varying pressure data for the exits from the VS nested within it. The fastest flow was found in the cerebral aqueduct, where a maximum velocity of 11.38 mm/s was observed over five cycles. The maximum Reynolds number recorded during the simulation was 15 with an average Reynolds number of the order of 0.39, indicating that CSF motion is creeping flow in most of the computational domain and consequently will follow the geometry of the model. CSF pressure also varies with geometry with a maximum pressure drop of 1.14 Pa occurring through the cerebral aqueduct. CSF flow velocity is substantially slower in the areas that are furthest away from the inlets; in some areas flow is nearly stagnant.  相似文献   

7.
This review surveys evidence for the flow of brain interstitial fluid (ISF) via preferential pathways through the brain, and its relation to cerebrospinal fluid (CSF). Studies over >100 years have raised several controversial points, not all of them resolved. Recent studies have usefully combined a histological and a mathematical approach. Taken together the evidence indicates an ISF bulk flow rate of 0.1-0.3 microl min(-1) g(-1) in rat brain along preferential pathways especially perivascular spaces and axon tracts. The main source of this fluid is likely to be the brain capillary endothelium, which has the necessary ion transporters, channels and water permeability to generate fluid at a low rate, c1/100th of the rate per square centimeter of CSF secretion across choroid plexus epithelium. There is also evidence that a proportion of CSF may recycle from the subarachnoid space into arterial perivascular spaces on the ventral surface of the brain, and join the circulating ISF, draining back via venous perivascular spaces and axon tracts into CSF compartments, and out both through arachnoid granulations and along cranial nerves to the lymphatics of the neck. The bulk flow of ISF has implications for non-synaptic cell:cell communication (volume transmission); for drug delivery, distribution, and clearance; for brain ionic homeostasis and its disturbance in brain edema; for the immune function of the brain; for the clearance of beta-amyloid deposits; and for the migration of cells (malignant cells, stem cells).  相似文献   

8.
Drug delivery to the central nervous system (CNS) is complicated by the blood-brain barrier. As a result, many agents that are found to be potentially effective at their site of action cannot be sufficiently or effectively delivered to the CNS and therefore have been discarded and not developed further for clinical use, leaving many CNS diseases untreated. One way to overcome this obstacle is intracerebroventricular (ICV) delivery of the therapeutics directly to cerebrospinal fluid (CSF). Recent experimental and clinical findings reveal that CSF flows from the ventricles throughout the parenchyma towards the subarachnoid space also named minor CSF pathway, while earlier, it was suggested that only in pathological conditions such as hydrocephalus this form of CSF flow occurs. This transependymal flow of CSF provides a route to distribute ICV-infused drugs throughout the brain. More insight on transependymal CSF flow will direct more rational to ICV drug delivery and broaden its clinical indications in managing CNS diseases.  相似文献   

9.
The choroid plexuses are suspended within the ventricles and account for approximately 75% of CSF production. The sodium-potassium ATPase operates within the choroidal epithelial cells and moves sodium ions towards the ventricular surface and potassium ions in the direction of the stroma. Water flows into CSF along osmotic gradient produced by sodium pump. The existence of extracellular channels by which brain metabolites could passively diffuse into the ventriculosubarachnoid space suggests an excretory role for CSF. Removal of solutes from the CSF could occur across the choroidal epithelium or arachnoid membrane into the blood. Systematically administered monoamine metabolites do not cross the blood-brain or the blood-CSF barrier. The regional concentrations of amine metabolites in the CSF is in part a reflection of the concentration of catecholamines and indoleamines in the immediately adjacent neuronal parenchyma. In order to illustrate the validity of monoamine metabolite determinations in cerebral ventricular CSF we developed a device which allowed for a continuous third ventricular CSF withdrawal in freely moving (or anesthetized) rats at a constant flow of 1 microliter/min. The elevation of biogenic amine metabolites in CSF by probenecid or their decline by monoamine oxidase inhibition was used to assess the rate of turnover of amines. Pharmacological manipulations (yohimbine, haloperidol, ouabain) resulted in mono-amine metabolite fluctuations in CSF similar to those previously described in brain tissue. Insulin administration caused an abrupt decrease in CSF glucose and elevated dopamine and serotonin metabolites in rats which had no access to food. These studies demonstrate the adaptation of in vivo analysis of CSF in rats but also exemplify the usefulness of monoamine metabolite determination in the CSF as indicators of brain function.  相似文献   

10.
Infusion of 125I-(Tyr A14)-insulin at tracer doses into the cerebrospinal fluid (CSF) resulted in a slow rate of increase in the CSF-labeled insulin during the first 2 hours with a plateau thereafter. Labeled insulin was cleared from the CSF at a higher rate than 3H-inulin, a marker of CSF bulk flow. The labeled insulin was mainly distributed in all the ventricular and periventricular brain regions. Small amounts of degraded insulin appeared in the CSF. Coinfusion with an excess of unlabeled insulin impaired the clearance and degradation of labeled insulin. It also inhibited the labeling in medial hypothalamus, olfactory bulbs and brain stem. In contrast, coinfusion of ribonuclease B (used to test the specificity of uptake) was without any effect. It was concluded that there is an active insulin intake from CSF into brain specific compartments that is presumably essential for the effects of insulin on brain function.  相似文献   

11.
There is still incomplete evidence for the cerebral clearance of creatinine (CTN) which is an endogenous convulsant and accumulates in the brain and CSF of patients with renal failure. The purpose of this study was to clarify the transporter-mediated CTN efflux transport from the brain/CSF. In vivo data demonstrated that CTN after intracerebral administration was not significantly eliminated from the brain across the blood-brain barrier. In contrast, the elimination clearance of CTN from the CSF was 60-fold greater than that of inulin, reflecting CSF bulk flow. Even in renal failure model rats, the increasing ratio of the CTN concentration in the CSF was lower than that in the plasma, suggesting a significant role for the CSF-to-blood efflux process. The inhibitory effects of inhibitors and antisense oligonucleotides on CTN uptake by isolated choroid plexus indicated the involvement of rat organic cation transporter 3 (rOCT3) and creatine transporter (CRT) in CTN transport. rOCT3- and CRT-mediated low-affinity CTN transport with K(m) values of 47.7 and 52.0 mM, respectively. Our findings suggest that CTN is eliminated from the CSF across the blood-CSF barrier as a major pathway of cerebral CTN clearance and transporter-mediated processes are involved in the CTN transport in the choroid plexus.  相似文献   

12.
The pharmacokinetics (PK) of an antibody in the brain and the spinal cord is insufficiently understood, which is an obstacle to the discovery of antibody drugs that target diseases in the central nervous system. In this study, we focused on the elimination of IgG from cerebrospinal fluid (CSF) circulating in the brain and the spinal cord in rats, and, to evaluate the influence of CSF bulk flow on the clearance of IgG, also examined the PK of inulin in CSF. To monitor their concentrations in CSF, IgG and inulin were co-administered into the lateral ventricle via a catheter, and CSF was collected from the cisterna magna via another catheter time-sequentially. Blood was also obtained from the same individuals, and the concentrations of IgG and inulin in CSF and plasma were measured. The results revealed that PK parameters of IgG were similar to those of inulin; half-life and clearance of IgG were 47.0 ± 6.49 min and 29.0 ± 15.2 mL/day/kg, and those of inulin were 52.8 ± 25.4 min and 29.0 ± 13.3 mL/day/kg. Moreover, deconvolution analysis indicated that all of the IgG administered in the lateral ventricle was transferred to plasma from CSF within 24 hours. This study demonstrated that IgG in CSF was eliminated by bulk flow and transferred totally to blood circulation.  相似文献   

13.
Cilia are complex organelles involved in sensory perception and fluid or cell movement. They are constructed through a highly conserved process called intraflagellar transport (IFT). Mutations in IFT genes, such as Tg737, result in severe developmental defects and disease. In the case of the Tg737orpk mutants, these pathological alterations include cystic kidney disease, biliary and pancreatic duct abnormalities, skeletal patterning defects, and hydrocephalus. Here, we explore the connection between cilia dysfunction and the development of hydrocephalus by using the Tg737orpk mutants. Our analysis indicates that cilia on cells of the brain ventricles of Tg737orpk mutant mice are severely malformed. On the ependymal cells, these defects lead to disorganized beating and impaired cerebrospinal fluid (CSF) movement. However, the loss of the cilia beat and CSF flow is not the initiating factor, as the pathology is present prior to the development of motile cilia on these cells and CSF flow is not impaired at early stages of the disease. Rather, our results suggest that loss of cilia leads to altered function of the choroid plexus epithelium, as evidenced by elevated intracellular cAMP levels and increased chloride concentration in the CSF. These data suggest that cilia function is necessary for regulating ion transport and CSF production, as well as for CSF flow through the ventricles.  相似文献   

14.
The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (Aβ). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that Aβ is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of Aβ in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of Aβ. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance.  相似文献   

15.

Background

Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation.

Methods

We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test.

Results

We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2?>?apoE3?>?apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state.

Conclusions

Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.
  相似文献   

16.
Recent investigations confirm the importance of nonsynaptic signal transmission in several functions of the nervous tissue. Present in various periventricular brain regions of vertebrates, the system of cerebrospinal fluid (CSF)-contacting neurons seems to have a special role in taking up, transforming and emitting nonsynaptic signals mediated by the internal and external CSF and intercellular fluid of the brain. Most of the CSF-contacting nerve cells send dendritic processes into the internal CSF of the brain ventricles or central canal where they form terminals bearing stereocilia and a 9+0-, or 9+2-type cilium. Some of these neurons resemble known sensory cells of chemoreceptor-type, others may be sensitive to the pressure or flow of the CSF, or to the illumination of the brain tissue. The axons of the CSF-contacting neurons transmit information taken up by dendrites and perikarya to synaptic zones of various brain areas. By forming neurohormonal terminals, axons also contact the external CSF space and release various bioactive substances there. Some perikarya send their axons into the internal CSF, and form free endings there, or synapses on intraventricular dendrites, perikarya and/or on the ventricular surface of ependymal cells. Contacting the intercellular space, sensory-type cilia were also demonstrated on nerve cells situated in the brain tissue subependymally or farther away from the ventricles. Among neuronal elements entering the internal CSF-space, the hypothalamic CSF-contacting neurons are present in the magnocellular and parvicellular nuclei and in some circumventricular organs like the paraventricular organ and the vascular sac. The CSF-contacting dendrites of all these areas bear a solitary 9 x 2+0-type cilium and resemble chemoreceptors cytologically. In electrophysiological experiments, the neurons of the paraventricular organ are highly sensitive to the composition of the ventricular CSF. The axons of the CSF-contacting neurons terminate not only in the hypothalamic synaptic zones but also in tel-, mes- and rhombencephalic nuclei and reach the spinal cord as well. The supposed chemical information taken up by the CSF-contacting neurons from the ventricular CSF may influence the function of these areas of the central nervous system. Some nerve cells of the photoreceptor areas form sensory terminals similar to those of the hypothalamic CSF-contacting neurons. Special secondary neurons of the retina and pineal organ contact the retinal photoreceptor space and pineal recess respectively, both cavities being embryologically derived from the 3rd ventricle. The composition of these photoreceptor spaces is important in the photochemical transduction and may modify the activity of the secondary neurons. Septal and preoptic CSF-contacting neurons contain various opsins and other compounds of the phototransduction cascade and represent deep encephalic photoreceptors detecting the illumination of the brain tissue and play a role in the regulation of circadian and reproductive responses to light. The medullo-spinal CSF-contacting neurons present in the oblongate medulla, spinal cord and terminal filum, send their dendrites into the fourth ventricle and central canal. Resembling mechanoreceptors of the lateral line organ, the spinal CSF-contacting neurons may be sensitive to the pressure or flow of the CSF. The axons of these neurons terminate at the external CSF-space of the oblongate medulla and spinal cord and form neurohormonal nerve endings. Based on information taken up from the CSF, a regulatory effect on the production or composition of CSF was supposed for bioactive materials released by these terminals. Most of the axons of the medullospinal CSF-contacting neurons and the magno- and parvicellular neurosecretory nuclei running to neurohemal areas (neurohypophysis, median eminence, terminal lamina, vascular sac and urophysis) do not terminate directly on vessels, instead they form neurohormonal nerve terminals attached by half-desmosomes on the basal lamina of the external and vascular surface of the brain tissue. Therefore, the bioactive materials released from these terminals primarily enter the external CSF and secondarily, by diffusion into vessels and the composition of the external CSF, may have a modulatory effect on the bioactive substances released by the neurohormonal terminals. Contacting the intercellular space, sensory-type cilia were also demonstrated on nerve cells situated subependymally or farther away from the ventricles, among others in the neurosecretory nuclei. Since tight-junctions are lacking between ependymal cells of the ventricular wall, not only CSF-contacting but also subependymal ciliated neurons may be influenced by the actual composition of the CSF besides that of the intercellular fluid of the brain tissue. According to the comparative histological data summarised in this review, the ventricular CSF-contacting neurons represent the phylogenetically oldest component detecting the internal fluid milieu of the brain. The neurohormonal terminals on the external surface of the brain equally represent an ancient form of nonsynaptic signal transmission.  相似文献   

17.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

18.
《Médecine Nucléaire》2007,31(1):16-28
The cine Phase-Contrast Magnetic Resonance (PCMR) sequence is the only noninvasive technique for the study of cerebrospinal fluid (CSF) oscillations. It can provide CSF and blood flow measurements throughout the cardiac cycle. To study cerebral hydro-hemodynamic, models have been developed; nevertheless the majority of these models did not take into account the CSF oscillations. The objective of this study was to establish reference values for cerebral hydro-hemodynamic and propose a new electrical model of the brain dynamics.Material and methodsCSF and blood flows were measured in 19 control subjects by PCMR imaging. Dynamic flow images were analyzed on dedicated software to reconstruct the flow curves during the cardiac cycle. An electrical analogue was realized. The inputs of the model were fed by PCMR arterial and venous flows to simulate CSF oscillations. The simulated CSF oscillations were compared to the measured CSF oscillations to validate the model.ResultsThe key parameters of the CSF and blood flow curves were obtained, e.g. total cerebral blood flow was 688 ± 115 mL/min, ventricular CSF oscillatory volume was 0.05 ± 0.02 mL/cardiac cycle, and the subarachnoid CSF oscillatory volume was 0.55 ± 0.15 mL/cardiac cycle. A close agreement was found between measured and simulated cerebral CSF oscillations.ConclusionThis study established the main values characterizing cerebral hydrodynamics in a control population. It provided a better understanding of the mechanisms of intracranial volumes regulation during the cardiac cycle. Our results are now used in clinical practice and the model proposed is effective to study cerebral hydro-hemodynamic.  相似文献   

19.
An investigation was made into the effects of running (1 h at 20 m/min) on central serotonergic and dopaminergic metabolism in trained rats. Methodology involved continuous withdrawal of cerebrospinal fluid (CSF) from the third ventricle of conscious rats and measurements of tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) levels during a 2 h post-exercise period. All three compounds were increased during the hour following exercise and returned to their basal values within an hour later. CSF flow rate was stable when metabolite levels were elevated. Brain determinations indicated that CSF metabolite variations only qualitatively paralleled brain changes. Indeed, post-exercise TRP, 5-HIAA, and HVA levels were increased to a greater extent in brain when compared to CSF. It is suggested that increased serotonergic and dopaminergic metabolism, caused by motor activity, may be involved in the behavioral effects of exercise.  相似文献   

20.
The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and--when barrier integrity is impaired--in the pathology of many common CNS disorders such as Alzheimer's disease, Parkinson's disease and stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号