首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-carbon metabolism mediated by folate coenzymes plays an essential role in several major cellular processes. In the prokaryotes studied, three folate-dependent enzymes, 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) generally exist as monofunctional or bifunctional proteins, whereas in eukaryotes the three activities are present on one polypeptide. The structural organization of these enzymes in plants had not previously been examined. We have purified the 10-formyltetrahydrofolate synthetase activity from spinach leaves to homogeneity and raised antibodies to it. The protein was a dimer with a subunit molecular weight of Mr = 67,000. The Km values for the three substrates, (6R)-tetrahydrofolate, ATP, and formate were 0.94, 0.043, and 21.9 mM, respectively. The enzyme required both monovalent and divalent cations for maximum activity. The 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities of spinach coeluted separately from the 10-formyltetrahydrofolate synthetase activity on a Matrex Green-A column. On the same column, the activities of the yeast trifunctional C1-tetrahydrofolate synthase coeluted. In addition, antibodies raised to the purified spinach protein immunoinactivated and immunoprecipitated only the 10-formyltetrahydrofolate synthetase activity in a crude extract of spinach leaves. These results suggest that unlike the trifunctional form of C1-tetrahydrofolate synthase in the other eukaryotes examined, 10-formyltetrahydrofolate synthetase in spinach leaves is monofunctional and 5,10-methyl-enetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase appear to be bifunctional. Although structurally dissimilar to the other eukaryotic trifunctional enzymes, the 35 amino-terminal residues of spinach 10-formyltetrahydrofolate synthetase showed 35% identity with six other tetrahydrofolate synthetases.  相似文献   

2.
Three folate enzymes, 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase, and 10-formyltetrahydrofolate synthetase have been purified 100-fold from porcine liver. The three activities co-purify through fractionation with (NH4)2SO4, polyethylene glycol-6000, and chromatography on DEAE-Sephadex and phosphocellulose columns. In addition, the observation that NADP, a substrate for the dehydrogenase, protects all three enzymes from heat inactivation suggests that the enzymes are present as a protein complex.  相似文献   

3.
C1-Tetrahydrofolate synthase is a multifunctional enzyme which catalyzes three reactions in 1-carbon metabolism: 10-formyltetrahydrofolate synthetase; 5,10-methenyltetrahydrofolate cyclohydrolase; 5,10-methylenetetrahydrofolate dehydrogenase. A rapid 1-day purification procedure has been developed which gives 40 mg of pure enzyme from 10 rabbit livers. The 10-formyltetrahydrofolate synthetase activity of this trifunctional enzyme has a specific activity that is 4-fold higher than the enzyme previously purified from rabbit liver. Conditions have been developed for the rapid isolation of a tryptic fragment of the enzyme which contains the methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities. This fragment is a monomer exhibiting a subunit and native molecular weight of 36,000 in most buffers. However, in phosphate buffers the native molecular weight suggests that the fragment is a dimer. Conditions are also given whereby chymotryptic digestion allows the simultaneous isolation from the native enzyme of a large fragment containing the 10-formyltetrahydrofolate synthetase activity and a smaller fragment containing the dehydrogenase and cyclohydrolase activities. The large fragment is a dimer with a subunit molecular weight of 66,000. The small fragment retains all of the dehydrogenase and cyclohydrolase activities of the native enzyme. The large fragment is unstable but retains most of the 10-formyltetrahydrofolate synthetase activity. Km values of substrates for the two fragments are the same as the values for the native enzyme. The 10-formyltetrahydrofolate synthetase activity of the native enzyme requires ammonium or potassium ions for expression of full catalytic activity. The effect of these two ions on the catalytic activity of the large chymotryptic fragment is the same as with the native enzyme. We have shown by differential scanning calorimetry that the native enzyme contains two protein domains which show thermal transitions at 47 and 60 degrees C. Evidence is presented that the two domains are related to the two protein fragments generated by proteolysis of the native enzyme. The larger of the two domains contains the active site for the 10-formyltetrahydrofolate synthetase activity while the smaller domain contains the active site which catalyzes the dehydrogenase and cyclohydrolase reactions. Replacement of sodium ion buffers with either ammonium or potassium ions results in an increase in stability of the large domain of the native enzyme. This change in stability is not accompanied by a change in the quaternary structure of the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Clostridium formicoaceticum ferments fructose labeled with (14)C in carbon 1, 4, 5, or 6 via the Embden Meyerhof pathway. In fermentations of fructose in the presence of (14)CO(2), acetate is formed labeled equally in both carbons. Extracts convert the methyl groups of 5-methyltetrahydrofolate and methyl-B(12) to the methyl group of acetate in the presence of pyruvate. Formate dehydrogenase, 10-formyltetrahydrofolate synthetase, 5,10-methenyltetrahydrofolate cyclohydrolase, 5,10-methylenetetrahydrofolate dehydrogenase, and 5,10-methylenetetrahydrofolate reductase are present in extracts of C. formicoaceticum. These enzymes are needed for the conversion of CO(2) to 5-methyltetrahydrofolate. It is proposed that acetate is totally synthesized from CO(2) via the reactions catalyzed by the enzymes listed above and that 5-methyltetra-hydrofolate and a methylcorrinoid are intermediates in this synthesis.  相似文献   

5.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is encoded by the ADE3 locus, yet ade3 mutants have low but detectable levels of these enzyme activities. Synthetase, cyclohydrolase, and dehydrogenase activities in an ade3 deletion strain co-purify 4,000-fold to yield a single protein species as seen on sodium dodecyl sulfate-polyacrylamide gels. The native molecular weight of the isozyme (Mr = 200,000 by gel exclusion chromatography) and the size of its subunits (Mr = 100,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are similar to those of C1-tetrahydrofolate synthase. Cell fractionation experiments show that the isozyme, but not C1-tetrahydrofolate synthase, is localized in the mitochondria. Genetic studies indicate that the isozyme is encoded in the nuclear genome. Peptide mapping experiments show that C1-tetrahydrofolate synthase and the isozyme are not structurally identical. However, immunotitration experiments and amino acid sequence analysis suggest that C1-tetrahydrofolate synthase and the isozyme are structurally related. We propose to call the isozyme "mitochondrial C1-tetrahydrofolate synthase."  相似文献   

6.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is found in both the cytoplasm and the mitochondria. The gene encoding yeast mitochondrial C1-tetrahydrofolate synthase was isolated using synthetic oligonucleotide probes based on the amino-terminal sequence of the purified protein. Hybridization analysis shows that the gene (designated MIS1) has a single copy in the yeast genome. The predicted amino acid sequence of mitochondrial C1-tetrahydrofolate synthase shares 71% identity with yeast C1-tetrahydrofolate synthase and shares 39% identity with clostridial 10-formyltetrahydrofolate synthetase. Chromosomal deletions of the mitochondrial C1-tetrahydrofolate synthase gene were generated using the cloned MIS1 gene. Mutant strains which lack a functional MIS1 gene are viable and can grow in medium containing a nonfermentable carbon source. In fact, deletion of the MIS1 locus has no detectable effect on cell growth.  相似文献   

7.
The one-carbon metabolism enzymes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) can be found on a single trifunctional protein in the eukaryotes examined. The one exception is in spinach leaves where 10-formyltetrahydrofolate synthetase is monofunctional (Nour, J. M., and Rabinowitz, J. C. (1991) J. Biol. Chem. 266, 18363-18369). In the prokaryotes examined, 10-formyltetrahydrofolate synthetase is either absent or is monofunctional. A cDNA clone encoding spinach leaf 10-formyltetrahydrofolate synthetase was isolated through the use of antibodies to the purified enzyme. This clone had an open reading frame of 1914 base pairs and encoded for a protein containing 636 amino acids with a calculated M(r) of 67,727. The percentage identity between spinach 10-formyltetrahydrofolate synthetase and the synthetase domains in the four trifunctional eukaryotic enzymes and the two monofunctional prokaryotic enzymes that have been cloned and sequenced was: 64.9% human, 63.8% rat, 55.6% yeast cytoplasm, 53.8% yeast mitochondria, 47.8% Clostridium acidi-urici, and 47.9% Clostridium thermoaceticum. Clearly the spinach monofunctional protein had greatest homology with the mammalian proteins. The spinach protein is longer than the two other monofunctional prokaryotic proteins. Possible reasons for this are presented. The codon usage and the putative translation initiation sites are examined and compared with other spinach proteins.  相似文献   

8.
Tryptic digestion of a multifunctional enzyme from porcine liver containing methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), methenyltetrahydrofolate cyclohydrolase (5,10-methenyltetrahydrofolate 5-hydrolase, EC 3.5.4.9) and formyltetrahydrofolate synthetase (formate:tetrahydrofolate ligase, EC 6.3.4.3) activities destroys the synthetase. A fragment containing both dehydrogenase and cyclohydrolase activities has been isolated by affinity chromatography on an NADP+-Sepharose affinity column. The purified fragment is homogeneous on dodecyl sulfate-polyacrylamide gel electrophoresis where its molecular weight was determined as 33 000 +/- 1200 compared with 100 000 for the undigested protein. The cyclohydrolase activity retains sensitivity to inhibition by NADP+, MgATP and ATP.  相似文献   

9.
The stability and eventual interconversion of nine mono-glutamate folates (5-methyl-tetrahydrofolate, tetrahydrofolate, 5-formyltetrahydrofolate, 5,10-methenyltetrahydrofolate, 5,10-methylenetetrahydrofolate, dihydrofolate, 10-formylfolic acid, 10-formyltetrahydrofolate and folic acid) during the typical sample preparation steps (heat treatment for 10 min at 100 degrees C and incubation for 2 h at 37 degrees C) at different pH values have been investigated by LC-MS/MS. An LC-MS/MS method with isotopically labelled [(13)C(5)]5-methyltetrahydrofolate and [(13)C(5)] folic acid as internal standards has been developed with enhanced sensitivity using a Chromolith RP-18 column. 5-Methyltetrahydrofolate, folic acid and 10-formylfolic acid are relatively stable at different pHs (from 2 to 10) with and without heat treatment. Tetrahydrofolate shows instability at low pH. 5-Formyltetrahydrofolate and 5,10-methenyltetrahydrofolate can interconvert by changes in pH. Tetrahydrofolate and 5,10-methylenetetrahydrofolate can interconvert with formaldehyde or by changes in pH. Incubation at 37 degrees C for 2 h is much less aggressive for most folates as compared with heat treatment at 100 degrees C. At 37 degrees C most folates are stable at pH values between 4 and 8 except tetrahydrofolate and dihydrofolate, which are degraded at low pH. 10-Formyltetrahydrofolate and 5,10-methylenetetrahydrofolate cannot be quantified in the present method because these compounds are converted to 5,10-methenyltetrahydrofolate and tetrahydrofolate, respectively, in the acidic mobile phase. This study provides useful information for the analysis of folates in the future as well as for the interpretation of quantitative results from earlier work.  相似文献   

10.
Several of the folate-mediated reactions in eucaryotic cells are carried out by multifunctional proteins using the naturally occurring pteroylpolyglutamate derivatives. The compounds tetrahydropteroyl(glutamate)n where n = 1, 3, 5, or 7 were used to determine whether the additional glutamyl residues on the substrates provide kinetic advantages with two folate-dependent multifunctional protein. Methylenetetrahydrofolate dehydrogenase(EC 1.5.1.5)-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9)-formyltetrahydrofolate synthetase (EC 6.3.4.3) activities comprise a trifunctional protein, and formiminoglutamate:tetrahydrofolate formiminotransferase(EC 2.1.2.5)-formiminotetrahydrofolate cyclodeaminase (EC 4.3.1.40 for a bifunctional one. The dehydrogenase, transferase and synthetase were found to have 10–40-fold lower Km values for the tetrahydropteroylpolyglutamate derivatives with essentially unchanged values of V. Specificities with cyclodeaminase and cyclo-activities; hydrolase were determined by using pteroylglutamates as inhibitors of the activities; pteroylpentaglutamate is a 70-fold better inhibitor than folate with cyclodeaminase, but is only 10-fold better with cyclohydrolase. Because of the sequential nature of the enzymic activities in these multifunctional proteins, the tetrahydropteroylpolyglutamate substrates were examined to see if they provide a kinetic advantage by promoting transfer of folate intermediates between active sites on a single enzyme molecule. With the sequential transferase-deaminase activities, it was observed that the product of the transferase accumulates in the medium with tetrahydropteroylmonoglutamate as the substrate, but does not when the pentaglutamate is used. Chemical modification to selectively inactive the transferase and deaminase, followed by recombination, demonstrated that this kinetic property is observed because the intermediate formiminotetrahydropteroylpentaglutamate is transferred preferentially to the daminase site rather than equilibrating with the medium.  相似文献   

11.
Rapid and convenient purification procedures based upon heparin-agarose chromatography for C1-tetrahydrofolate synthase from Saccharomyces cerevisiae and 10-formyltetrahydrofolate synthetase from Clostridium acidi-urici have been developed. The purification of the yeast enzyme involves three chromatographic steps that can be done rapidly, with no intervening dialyses, and results in high yield. The first step alone, heparin-agarose chromatography, is sufficient to purify the enzyme from yeast bearing a cloned copy of the ADE3 gene that overexpresses the protein. The other steps in the purification from wild-type yeast are matrex gel red A and phenyl-Sepharose chromatography. The purification of the clostridial enzyme involves protamine sulfate fractionation and heparin-agarose chromatography. Heparin-agarose also binds two other enzymes that use tetrahydrofolate, 5,10-methenyltetrahydrofolate cyclohydrolase and 5,10-methylenetetrahydrofolate dehydrogenase. Thus, heparin-agarose should prove useful in purification of a variety of enzymes that utilize tetrahydrofolate or its derivatives as a cofactor.  相似文献   

12.
The combined activities of rabbit liver cytosolic serine hydroxymethyltransferase and C1-tetrahydrofolate synthase convert tetrahydrofolate and formate to 5-formyltetrahydrofolate. In this reaction C1-tetrahydrofolate synthase converts tetrahydrofolate and formate to 5,10-methenyltetrahydrofolate, which is hydrolyzed to 5-formyltetrahydrofolate by a serine hydroxymethyltransferase-glycine complex. Serine hydroxymethyltransferase, in the presence of glycine, catalyzes the conversion of chemically synthesized 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate with biphasic kinetics. There is a rapid burst of product that has a half-life of formation of 0.4 s followed by a slower phase with a completion time of about 1 h. The substrate for the burst phase of the reaction was shown not to be 5,10-methenyltetrahydrofolate but rather a one-carbon derivative of tetrahydrofolate which exists in the presence of 5,10-methenyltetrahydrofolate. This derivative is stable at pH 7 and is not an intermediate in the hydrolysis of 5,10-methenyltetrahydrofolate to 10-formyltetrahydrofolate by C1-tetrahydrofolate synthase. Cytosolic serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate pentaglutamate to 5-formyltetrahydrofolate pentaglutamate 15-fold faster than the hydrolysis of the monoglutamate derivative. The pentaglutamate derivative of 5-formyltetrahydrofolate binds tightly to serine hydroxymethyltransferase and dissociates slowly with a half-life of 16 s. Both rabbit liver mitochondrial and Escherichia coli serine hydroxymethyltransferase catalyze the conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at rates similar to those observed for the cytosolic enzyme. Evidence that this reaction accounts for the in vivo presence of 5-formyltetrahydrofolate is suggested by the observation that mutant strains of E. coli, which lack serine hydroxymethyltransferase activity, do not contain 5-formyltetrahydrofolate, but both these cells, containing an overproducing plasmid of serine hydroxymethyltransferase, and wild-type cells do have measurable amounts of this form of the coenzyme.  相似文献   

13.
Chen L  Chan SY  Cossins EA 《Plant physiology》1997,115(1):299-309
Leaf extracts of 14-d-old pea (Pisum sativum L. cv Homesteader) seedlings were examined for folate derivatives and for 10-formyltetrahydrofolate synthetase (SYN), 5,10-methenyltetrahydrofolate cyclohydrolase (CYC), and 5,10-methylenetetrahydrofolate dehydrogenase (DHY) activities. Microbiological and enzyme assays showed that leaf folates SYN, CYC, and DHY were predominantly cytosolic. Extracts of Percoll gradient-purified mitochondria contained less than 1% of total leaf folate and less that 1% of each enzyme activity. Fractionation of whole-leaf homogenates resulted in the copurification of DHY and CYC (subunit 38 kD) and the isolation of a SYN protein (subunit 66 kD). Polyclonal antibodies were raised against purified cytosolic DHY-CYC (DHY-CYC-Ab) and cytosolic SYN (SYN-Ab), respectively. Immunoblots showed that DHY-CYC-Ab cross-reacted with a mitochondrial protein band (38 kD). Two mitochondrial protein bands (subunit Mr = 40,000 and 44,000) cross-reacted with SYN-Ab. Immunoaffinity chromatography (DHY-CYC-Ab as the immobile ligand) indicated that the bulk of mitochondrial SYN activity was not associated with mitochondrial DHY or CYC. When 9-d-old etiolated pea seedlings were exposed to light for up to 3 d, the specific enzyme activities of DHY-CYC in whole-leaf extracts rose 2-fold and more DHY-CYC-Ab cross-reacting protein was detected. In contrast, the specific activity of SYN fell from 5 to 1 [mu]mol min-1 mg-1 protein and less SYN-Ab cross-reacting protein was detected. The data suggest that in pea leaves, the bulk of one-carbon-substituted tetrahydrofolates and enzymes for the generation of 10-formyltetrahydrofolate are extra-mitochondrial.  相似文献   

14.
The formyl-methenyl-methylenetetrahydrofolate synthetase from chicken liver catalyzes the formation of the 10-formyl- and 5,10-methenyltetrahydrofolate cofactors via three enzymatic activities. In this report we define the kinetic relationships between the activities of this trifunctional protein. An investigation of the time course for 10-formyl cofactor synthesis by computer modeling indicates that commencing with tetrahydropteroyltriglutamate, the activities of the synthetase/cyclohydrolase couple act as separate enzymic species. In contrast, 10-formyl cofactor formation from the 5,10-methylene cofactor utilizing the dehydrogenase/cyclohydrolase couple is described by a single or interactive site model that partitions the 5,10-methenyl intermediate primarily (85%) to the 10-formyl product. An unusual characteristic of the latter coupled activities is the negligible cyclohydrolase activity toward exogenous 5,10-methenyl cofactor, which serves as substrate in the individual activity assay. This is based on (1) competitive inhibition by 5,11-methenyltetrahydrohomofolate against the 5,10-methenyl derivative in the cyclohydrolase-catalyzed hydrolysis but the absence of such inhibition in the dehydrogenase/cyclohydrolase couple and (2) a pulse-chase experiment showing the failure of chase 5,10-methenyl cofactor to dilute the 10-formyl product derived from the coupled activities. The result of this coupling is to minimize the concentration of the 5,10-methenyl species, consistent with its noninvolvement in de novo purine biosynthesis.  相似文献   

15.
16.
Desulfotomaculum acetoxidans has been proposed to oxidize acetate to CO2 via an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway rather than via the citric acid cycle. We report here the presence of the enzyme activities required for the operation of the novel pathway. In cell extracts the following activities were found (values in brackets=specific activities and apparent K m; 1 U·mg-1=1 mol·min-1·mg protein-1 at 37°C): Acetate kinase (6.3 U·mg-1; 2 mM acetate; 2.4 mM ATP); phosphate acetyltransferase (60 U·mg-1, 0.4 mM acetylphosphate; 0.1 mM CoA); carbon monoxide dehydrogenase (29 U·mg-1; 13% carbon monoxide; 1.3 mM methyl viologen); 5,10-methylenetetrahydrofolate reductase (3 U·mg-1, 0.06 mM CH3–FH4); methylenetetrahydrofolate dehydrogenase (3.6 U·mg-1, 0.9 mM NAD, 0.1 mM CH2=FH4); methenyltetrahydrofolate cyclohydrolase (0.3 U·mg-1); formyltetrahydrofolate synthetase (3 U·mg-1, 1.4 mM FH4, 0.4 mM ATP, 13 mM formate); and formate dehydrogenase (10 U·mg-1, 0.4 mM formate, 0.5 mM NAD). The specific activities are sufficient to account for the in vivo acetate oxidation rate of 0.26 U·mg-1.Non-standard abbreviations FH4 Tetrahydrofolate - CHO-FH4 N10-formyltetrahydrofolate - CHFH4 N5,N10-methenyltetrahydrofolate - CH2=FH4 N5,N10-methylenetetrahydrofolate - CH3–FH4 N5-methyltetrahydrofolate - MOPS morpholinopropane sulfonic acid - DTT d,l-1,4-dithiothreitol - TRIS tris-(hydroxymethyl)-aminomethane - Ap5A p1,P5-di(adenosine-5)pentaphosphate - MV methyl viologen  相似文献   

17.
Baggott JE 《Biochemistry》2000,39(47):14647-14653
At pH 4.0 to 4.5, 5,10-methenyltetrahydrofolate is hydrolyzed to only 5-formyltetrahydrofolate if reducing agents are present or iron-redox cycling is suppressed. At pH 4.0, the equilibrium position for this hydrolysis is approximately equal concentrations of both folates. If no reducing agents are used or iron-redox cycling is promoted, considerable amounts of 10-formyldihydrofolate are also formed. It is likely that 10-formyldihydrofolate has been misidentified as 5,10-hydroxymethylenetetrahydrofolate, which was reported to accumulate during the hydrolysis of 5, 10-methenyltetrahydrofolate to 5-formyltetrahydrofolate [Stover, P. and Schirch, V. (1992) Biochemistry 31, 2148-2155 and 2155-2164; (1990) J. Biol. Chem. 265, 14227-14233]. Since 5, 10-hydroxymethylenetetrahydrofolate is reported to be the viable in vivo substrate for serine hydroxymethyltransferase-catalyzed formation of 5-formyltetrahydrofolate, and 5, 10-hydroxymethylenetetrahydrofolate probably does not accumulate, the above folate metabolism is now doubtful. It is hypothesized that mildly acidic subcellular organelles provide an environment for the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate in vivo, and there is no requirement for enzyme catalysis. Finally, 10-formyltetrahydrofolate is susceptible to iron-catalyzed oxidation to 10-formyldihydrofolate at pH 4 to 4.5.  相似文献   

18.
5,10-Methylenetetrahydrofolate dehydrogenase (MTD) catalyzes the reversible oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate. This reaction is critical for the supply of one-carbon units at the required oxidation states for the synthesis of purines and dTMP. For most MTDs, dehydrogenase activity is co-located with a methenyl-THF cyclohydrolase activity as part of bifunctional or trifunctional enzyme. The yeast Saccharomyces cerevisiae contains a monofunctional NAD(+)-dependent 5,10-methylenetetrahydrofolate dehydrogenase (yMTD). Kinetic, crystallographic, and mutagenesis studies were conducted to identify critical residues in order to gain further insight into the reaction mechanism of this enzyme and its apparent lack of cyclohydrolase activity. Hydride transfer was found to be rate-limiting for the oxidation of methylenetetrahydrofolate by kinetic isotope experiments (V(H)/V(D) = 3.3), and the facial selectivity of the hydride transfer to NAD(+) was determined to be Pro-R (A-specific). Model building based on the previously solved structure of yMTD with bound NAD cofactor suggested a possible role for three conserved amino acids in substrate binding or catalysis: Glu121, Cys150, and Thr151. Steady-state kinetic measurements of mutant enzymes demonstrated that Glu121 and Cys150 were essential for dehydrogenase activity, whereas Thr151 allowed some substitution. Our results are consistent with a key role for Glu121 in correctly binding the folate substrate; however, the exact role of C150 is unclear. Single mutants Thr57Lys and Tyr98Gln and double mutant T57K/Y98Q were prepared to test the hypothesis that the lack of cyclohydrolase activity in yMTD was due to the substitution of a conserved Lys/Gln pair found in bifunctional MTDs. Each mutant retained dehydrogenase activity, but no cyclohydrolase activity was detected.  相似文献   

19.
A trifunctional protein in man, 5,10-methylenetetrahydrofolate dehydrogenase-5,10-methenyltetrahydrofolate cyclohydrolase-10-formyltetrahydrofolate synthetase, catalyzes three consecutive steps in the interconversion of tetrahydrofolate derivatives; these derivatives supply one-carbon units for intermediary metabolism. Somatic cell hybridization and in situ hybridization were used to localize the functional gene coding for this protein--to human chromosome 14q24, near the c-fos and TGF-beta 3 loci. A second hybridizing sequence, possibly a pseudogene, was identified near the centromere of the X chromosome, at Xp11.  相似文献   

20.
We have purified the enzyme 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) from Escherichia coli to homogeneity by a newly devised procedure. The enzyme has been purified at least 2,000-fold in a 31% yield. The specific activity of the enzyme obtained is 7.4 times greater than any previous preparation from this source. The purified enzyme is specific for NADP. The protein also contains 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9) activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and behavior on a molecular sieving column suggest that the enzyme is a dimer of identical subunits. We have cloned the E. coli gene coding for the enzyme through the use of polymerase chain reaction based on primers designed from the NH2 terminal analysis of the isolated enzyme. We sequenced the gene. The derived amino acid sequence of the enzyme contains 287 amino acids of Mr 31,000. The sequence shows 50% identity to two bifunctional mitochondrial enzymes specific for NAD, and 40-45% identity to the presumed dehydrogenase/cyclohydrolase domains of the trifunctional C1-tetrahydrofolate synthase of yeast mitochondria and cytoplasm and human and rat cytoplasm. An identical sequence of 14 amino acids with no gaps is present in all 7 sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号