首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The common notion that the septa in the carnivoran auditory bulla are formed by the growth of bone edges inwards the bullar cavity is a mistaken assumption based on the data of the late 19th century. Intrabullar partitions are in fact a result of the differential resorption of the bulla internal surface during the growth of the external surface. A septum develops at the boundary between local, relatively independent, ‘inflations’ of the bulla wall. This explanation, given by Van Kampen in 1905 for the case of the Canidae and some Mustelidae, can be applied to the whole order, including the aeluroid families with their ‘bilaminar’ septum bullae. Such an approach seems to solve the problem of homology of the intrabullar septa throughout the Carnivora, a question which has long been confused because of insufficient knowledge of septum morphogenesis. The partitions can really be considered as indicators of independent attempts to increase the size of a middle‐ear cavity among the infraorders. This conclusion follows immediately from the difference between major carnivoran taxa in the arrangement of separate inflations on the bulla wall, which can be considered as additional sinuses enlarging the hypotympanic space. It is precisely this difference that conditions the relative contribution of several bones (mainly of the ectotympanic and caudal entotympanic) to the intrabullar septa. Thus, the initial topographies of the above sinuses – whichever subsequent bone modelling of septa occurs – represent unique patterns useful in the higher‐level systematics of the Carnivora.  相似文献   

3.
The sequence (16,829 nt) of the complete mitochondrial genome of the greater Indian rhinoceros, Rhinoceros unicornis, was determined. Like other perissodactyls studied (horse and donkey) the rhinoceros demonstrates length variation (heteroplasmy) associated with different numbers of repetitive motifs in the control region. The 16,829-nt variety of the molecule includes 36 identical control region motifs. The evolution of individual peptide-coding genes was examined by comparison with a distantly related perissodactyl, the horse, and the relationships among the orders Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) were examined on the basis of concatenated sequences of 12 mitochondrial peptide-coding genes. The phylogenetic analyses grouped Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea) into a superordinal clade and within this clade a sister group relationship was recognized between Carnivora and Perissodactyla to the exclusion of Artiodactyla (+ Cetacea) . On the basis of the molecular difference between the rhinoceros and the horse and by applying as a reference to Artiodactyl/Cetacean divergence set at 60 million years ago (MYA), the evolutionary divergence between the families Rhinocerotidae and Equidae was dated to approximately 50 MYA.   相似文献   

4.
Tomiya S 《PloS one》2011,6(9):e24146

Background

Despite a long history of research, the phylogenetic origin and initial diversification of the mammalian crown-group Carnivora remain elusive. Well-preserved fossil materials of basal carnivorans are essential for resolving these issues, and for constraining the timing of the carnivoran origin, which constitutes an important time-calibration point in mammalian phylogenetics.

Methodology/Principal Findings

A new carnivoramorphan from the middle Eocene of southern California, Lycophocyon hutchisoni, is described. The new taxon exhibits stages of dental and basicranial evolution that are intermediate between earlier carnivoramorphans and the earliest representatives of canoid carnivorans. The evolutionary affinity of the new taxon was determined by a cladistic analysis of previously-published and newly-acquired morphological data for 30 Paleogene carnivoramorphans. The most-parsimonious trees identified L. hutchisoni as a basal caniform carnivoran, and placed (1) Tapocyon robustus, Quercygale angustidens, “Miacissylvestris, “M.uintensis, and “M.gracilis inside or outside the Carnivora, (2) nimravids within the Feliformia, and (3) the amphicyonid Daphoenus outside the crown-group Canoidea. Parsimony reconstructions of ancestral character states suggest that loss of the upper third molars and development of well-ossified entotympanics that are firmly fused to the basicranium (neither condition is observed in L. hutchisoni) are not associated with the origin of the Carnivora as traditionally thought, but instead occurred independently in the Caniformia and the Feliformia. A discriminant analysis of the estimated body weight and dental ecomorphology predicted a mesocarnivorous diet for L. hutchisoni, and the postcranial morphology suggests a scansorial habit.

Conclusions/Significance

Lycophocyon hutchisoni illuminates the morphological evolution of early caniforms leading to the origin of crown-group canoids. Considerable uncertainty remains with respect to the phylogenetic origin of the Carnivora. The minimum date of caniform-feliform divergence is provisionally suggested to be either 47 million years ago or 38 million years ago, depending on the position of “Miacissylvestris within or outside the Carnivora, respectively.  相似文献   

5.

Background

Although it has proven to be an important foundation for investigations of carnivoran ecology, biology and evolution, the complete species-level supertree for Carnivora of Bininda-Emonds et al. is showing its age. Additional, largely molecular sequence data are now available for many species and the advancement of computer technology means that many of the limitations of the original analysis can now be avoided. We therefore sought to provide an updated estimate of the phylogenetic relationships within all extant Carnivora, again using supertree analysis to be able to analyze as much of the global phylogenetic database for the group as possible.

Results

In total, 188 source trees were combined, representing 114 trees from the literature together with 74 newly constructed gene trees derived from nearly 45,000 bp of sequence data from GenBank. The greater availability of sequence data means that the new supertree is almost completely resolved and also better reflects current phylogenetic opinion (for example, supporting a monophyletic Mephitidae, Eupleridae and Prionodontidae; placing Nandinia binotata as sister to the remaining Feliformia). Following an initial rapid radiation, diversification rate analyses indicate a downturn in the net speciation rate within the past three million years as well as a possible increase some 18.0 million years ago; numerous diversification rate shifts within the order were also identified.

Conclusions

Together, the two carnivore supertrees remain the only complete phylogenetic estimates for all extant species and the new supertree, like the old one, will form a key tool in helping us to further understand the biology of this charismatic group of carnivores.  相似文献   

6.
The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora.  相似文献   

7.
The evolution of the cetacean skeleton followed a path that differentiated this group from other terrestrial mammals about 50 million years ago [1], and debate is still going on about the relationships between Cetacea and Artiodactyla [2], [3], [4]. Some skeletal traits of the basilosaurids (the more advanced forms of Archaeocetes), such as the expansion of the peribullary air sinuses, dental modification and vertebral size uniformity [5] are maintained and further emphasized also in contemporary odontocetes and mysticetes. Using Dual-Energy X-Ray Absorptiometry here we report that the deposition of bone mineral in fetal and newborn specimens of the fin whale Balaenoptera physalus is remarkably higher in the bulla tympanica than in the adjacent basal skull or in the rest of the skeleton. Ossification of the tympanic bulla in fetal Artiodactyla (bovine, hippopotamus) is minimal, becomes sensible after birth and then progresses during growth, contrarily to the precocious mineralization that we observed in fin whales. Given the importance of the ear bones for the precise identification of phylogenetic relationship in therian evolution [6], this feature may indicate a specific evolutionary trait of fin whales and possibly other cetacean species or families. Early mineralization of the tympanic bulla allows immediate sound conduction in the aquatic medium and consequently holds potential importance for mother-calf relationship and postnatal survival.  相似文献   

8.
The human lineage has a very ancient origin, as most of the mammals. Its oldest representatives, anthropoid primates, have been described from Asia some 45 million years ago. During this long evolutionary story, two critical stages have appeared as especially important, their beginning in Asia and the emergence of hominids in Africa, some seven million years ago. These two stages are discussed hereby with new data relative to their Asian origins and their dispersal into Africa between 45 and 40 million years ago. Following this dispersal event, these primates evolved in Africa and gave rise to the early hominids. These appeared around seven million years ago and have three distinct representatives. Among them, Toumaï appears as the oldest and the closest to our ancestry, a point that is evidenced here.  相似文献   

9.
Over recent years, many discoveries have renewed our knowledge about the oldest stone industries and also about the behaviour and lifestyle of the hominids that made them, not only in East Africa, but also in the Near East, in Trans Caucasia and in southern Europe. If the first tools making hominids appear in East Africa as early as 2.55 million years ago, they are present in the Levant a little over 2 million years ago, as early as 1.81 million years ago at the gates of Europe in Trans-Caucasia, and a little over 1.4 million years ago on the Mediterranean coasts of Europe.  相似文献   

10.
The evolutionary relationships among the Carnivora were studied in a phylogenetic analysis based on the complete mitochondrial cytochromeb gene. The study, which addressed primarily the relationships among the Caniformia, included 4 feliform and 26 caniform species, with 9 pinnipeds. The analysis identified five caniform clades: Canidae, Ailuridae (with the monotypic lesser panda), Musteloidea (Mustelidae+Procyonidae), Ursidae (including the giant panda), and Pinnipedia. The closest relatives of the Pinnipedia among terrestrial caniforms were not identified conclusively. Our analysis shows that the skunks are only distantly related to remaining mustelids (Mustelidae sensu stricto) and that the family Mustelidae, including the skunks, is paraphyletic. The relationship among the five caniform clades was unresolved, suggesting an evolutionary separation within a relatively short period of time. Based on distance values, we propose that this primary diversification took place 45 million years ago.  相似文献   

11.
We have amplified and sequnced the entire mitochondrial DNA cytochromeb gene from four species of Suidae: babirusa, warthog, bearded pig, and some specimens belonging to different subspecies and populations of wild and domestic pigs (Sus scrofa). These sequences were aligned with additional mammalian sequences retrieved from the literature and were used to obtain phylogenetic trees of the Suiformes (Artiodactyla). Several species of Carnivora, Perissodactyla. Cetacea, and other Artiodactyla were used as outgroups. Molecular phylogenetic relationships among the Suiformes reflect their current taxonomy: Hippopotamidae, Tayassuidae, and Suidae are separated by deep genetic gaps, and the division of the Suidae into the subfamilies Babyrousinae., Phacochoerinae, and Suinae has strong genetic correlates. Cytochromeb sequences show differences among Asian and Western populations ofSus scrofa, agreeing with other genetic information (karyotypes blood groups, and protein variability). The two Italian subspecies of wild boar have unique mtDNA cytochromeb haplotypes. The evolutionary rates of cytochromeb sequences are different at transitions versus transversions as well as at first, second, and third positions of codons. Therefore, these classes of substitutions reached different levels of mutational saturation. Only transversions and the conservative first and second position substitutions are linearly related to genetic distances among the Suiformes. Therefore, divergence times were computed using unsaturated conserved nucleotide substitutions and calibrated using paleontological divergence times between some Artiodactyla. Transversions apparently evolve at remarkably regular rates in ungulate taxa which have accumulated less than 20% estimated sequence divergence, corresponding to about 40–45 million years of independent evolution. Molecular, information suggests that Hippopotamidae and Tayassuidae are not closely related (as stated by Pickford, 1986, 1989, 1993) and that the origin of babirusa and warthog (about 10–19 and 5–15 million years ago, respectively) is more recent than supported by current evolutionary reconstructions. The inferred origin of bearded pig is about 2.1 million years old, and genetic divergence among differentSus scrofa populations is probably a Pleistocene event. The addition of new sequences of Suiformes does not help in resolving the phylogenetic position ofHippopotamus amphibius, which shows weak but recurrent linkages with the cetacean evolutionary lineage.To whom correspondence should be addressed.  相似文献   

12.
The phylogenetic relationships of seven rodent species Microtus atticus, M. thomasi, M. epiroticus (family Arvicolidae) and Mus domesticus, Rattus norvegicus, Apodemus flavicollis and A. mystacinus (family Muridae) have been studied. In order to define these relationships we study the albumin evolution using the micro-complement fixation test (MC'F). No phylogenetic (immunological) distance between M. atticus and M. thomasi was found, a fact which confirms from the biochemical point of view the opinion that the former taxon is a synonym of the latter one. A molecular time scale relating MC'F immunological distances and geological time was established based on the assumption of a rate of 100 amino acid substitutions per–20 million years. The time of divergence between M. epiroticus and M. thomasi was estimated to be 0.5–0.6 million years ago (Pleistocene). Such a recent divergence corroborates the opinion based on morphological and protein electrophoretic criteria according to which Terricola (formerly Pitymys ) must be considered as a subgenus of the genus Microtus and not as a distinct genus Pitymys , as previously had been accepted. Apodemus flavicollis and A. mystacinus were separated about 0.65–0.8 million years ago (Pleistocene). The Rattus norvegicus lineage was separated–12.5 million years ago (end of Miocene), shortly before the Mus and Apodemus divergence. Our data indicate that the common ancestor of Arvicolidae and Muridae lived–25 million years ago (early Miocene). All these results are in agreement with paleontological and some recent DNA-DNA hybridization and electrophoretic data.  相似文献   

13.
South America was isolated from other continents during most of the Cenozoic, developing a singular mammalian fauna. In contrast to North America, Europe, Asia, and Africa, up to the late Neogene, the carnivore adaptive zone in South America was populated by crocodiles (Sebecidae), large snakes (Madtsoiidae), large birds (Phorusrhacidae), and metatherian mammals (Sparassodonta). Sparassodonta were varied and comprised a wide range of body masses (≈ 2–50 kg) and food habits. Their diversity decreased towards the late Miocene (Huayquerian Stage/Age) and the group became extinct in the “middle” Pliocene (≈ 3 Ma, Chapadmalalan Stage/Age). Several authors have suggested that the cause of this decline and extinction was the ingression of carnivorans to South America (about 6–7 Ma ago), because they competed with the Sparassodonta; although this hypothesis has been criticized in recent years. With the intention of testing the hypothesis of “competitive displacement,” we review the fossil record of South American Sparassodonta and Carnivora, collect data about diversity, estimate size and diet, and determine first and last appearances. The diversity of Sparassodonta is low relative to that of Carnivora throughout the Cenozoic with the early Miocene (Santacrucian Stage/Age) showing the greatest diversity with 11 species. In the late Miocene-middle Pliocene (Huayquerian Stage/Age), the fossil record shows overlap of groups, and the Sparassodonta’s richness curve begins to decline with the first record of Carnivora. Despite this overlap, carnivorans diversity ranged from four or fewer species in the late Miocene-Pliocene to a peak of around 20 species in the early Pleistocene (Ensenadan Stage/Age). Carnivora was initially represented by small-sized, omnivorous species, with large omnivores first appearing in the Chapadmalalan Stage/Age. Over this period, Sparassodonta was represented by large and small hypercarnivores and a single large omnivorous species. From this review of the fossil record, it is suggested that factors other than competitive displacement may have caused the extinction of the Sparassodonta.  相似文献   

14.
Although the relationships of the living hominoid primates (humans and apes) are well known, the relationships of the fossil species, times of divergence of both living and fossil species, and the biogeographic history of hominoids are not well established. Divergence times of living species, estimated from molecular clocks, have the potential to constrain hypotheses of the relationships of fossil species. In this study, new DNA sequences from nine protein-coding nuclear genes in great apes are added to existing datasets to increase the precision of molecular time estimates bearing on the evolutionary history of apes and humans. The divergence of Old World monkeys and hominoids at the Oligocene-Miocene boundary (approximately 23 million years ago) provides the best primate calibration point and yields a time and 95% confidence interval of 5.4 +/- 1.1 million years ago (36 nuclear genes) for the human-chimpanzee divergence. Older splitting events are estimated as 6.4 +/- 1.5 million years ago (gorilla, 31 genes), 11.3 +/- 1.3 million years ago (orangutan, 33 genes), and 14.9 +/- 2.0 million years ago (gibbon, 27 genes). Based on these molecular constraints, we find that several proposed phylogenies of fossil hominoid taxa are unlikely to be correct.  相似文献   

15.
In considering the impact of the earth's changing geophysical conditions during the history of life, it is surprising to learn that the earth's rotational period may have been as short as 4 h, as recently as 1900 million years ago (or 1.9 billion years ago). The implications of such figures for the origin and evolution of clocks are considerable, and the authors speculate on how this short rotational period might have influenced the development of the "protoclock" in early microorganisms, such as the Cyanobacteria, during the geological periodsin which they arose and flourished. They then discuss the subsequent duplication of clock genes that took place around and after the Cambrian period, 543 million years ago, and its consequences. They compare the relative divergences of the canonical clock genes, which reveal the Per family to be the most rapidly evolving. In addition, the authors use a statistical test to predict which residues within the PER and CRY families may have undergone functional specialization.  相似文献   

16.
Abstract The existence of areas of lower endemism and disjunction of New Zealand biota is typified by Nothofagus beech trees (hence “beech‐gap”) and have been attributed to a variety of causes ranging from ancient fault‐mediated displacement (20–25 million years ago) to Pleistocene glacial extirpation (<1.8 million years ago). We used cytochrome oxidase I and 12S mtDNA sequence data from a suite of endemic invertebrates to explore phylogeographic depth and patterns in South Island, New Zealand, where the “beech‐gap” occurs. Phylogeographic structure and genetic distance data are not consistent with ancient vicariant processes as a source of observed pattern. However, we also find that phylogeographic patterns are not entirely congruent and appear to reflect disparate responses to fragmentation, which we term “gap,”“colonization,” and “regional.” Radiations among congenerics, and in at least one instance within a species, probably took place in the Pliocene (2–7 million years ago), possibly under the influence of the onset of mountain building. This orogenic phase may have had a considerable impact on the development of the biota generally. Some of the taxa that we studied do not appear to have suffered range reduction during Pleistocene glaciation, consistent with their survival throughout that epoch in alpine habitats to which they are adapted. Other taxa have colonized the beech‐gap recently (i.e., after glaciation), whereas few among our sample retain evidence of extirpation in the most heavily glaciated zone.  相似文献   

17.
The Oriental garden lizard (Calotes versicolor) is one of the few non-gekkonid lizards that are geographically widespread in the tropics. We investigated its population dynamics on Hainan Island and the adjacent mainland of China and Vietnam, focusing on the impact of cyclic upheaval and submergence of land bridges during the Pleistocene. Our Bayesian phylogenetic analysis reveals two mitochondrial lineages, A and B, which are estimated to have coalesced about 0.26 million years ago (95% credibility interval: 0.05–0.61 million years ago). Lineage A contains individuals mainly from central and southern Wuzhi Mountain on Hainan Island, whereas lineage B mainly comprises individuals from other sites on the island plus the adjacent mainland. The estimated coalescence times within lineages A (0.05 million years ago) and B (0.13 million years ago) fall within a period of cyclical land-bridge formation and disappearance in the Pleistocene. A spatial analysis of molecular variance identified two distinct population groupings: I, primarily containing lineage A, and II, mainly consisting of lineage B. However, haplotypes from lineages A and B occur sympatrically, suggesting that gene flow is ongoing. Neither Wuzhi Mountain nor Qiongzhou Strait and Gulf of Tonkin act as barriers to gene flow among C. versicolor populations. Analyses of the data using mismatch distributions and extended Bayesian skyline plots provide evidence of a relatively stable population size through time for Group I, and moderate population expansions and contractions during the end of the Pleistocene for Group II. We conclude that the phylogeographical patterns of C. versicolor are the combined product of Pleistocene sea-level oscillations and nonphysical barriers to gene flow.  相似文献   

18.
The time of origin of the hominid lineage has long been debated. Macromolecular studies have consistently shown genetic distances between living humans and African apes to be quite small. The molecular clock hypothesis proposes that the time of separation of these lineages is relatively recent (in the range of 4–8 million years ago) and not 15 million years or more ago as usually suggested. Three independent molecular comparisons yield a mean estimate of 4.6 million years for the hominid-African pongid divergence. The relationship of Theropithecusand Papiois a parallel case within Primates of two taxa which are quite similar at the molecular level, but which are usually thought to have separated relatively long ago. The two cases of seeming discordance between different lines of evidence are analogous. Each involves a speciation event which eventually resulted in one substantially derived lineage and one or more relatively unchanged lineages. In each case, claims of the antiquity of the divergence event extend to at least twice the age of the first certain appearance of the more derived lineage in the fossil record. Finally, in each case, the molecular clock model suggests a range of possible divergence times that overlaps with the first appearances of undoubted hominids and Theropithecusin the fossil record. This test involving paleontological evidence supports the molecular clock hypothesis.  相似文献   

19.
The study of the historical biogeography of butterflies has been hampered by a lack of well-resolved phylogenies and a good estimate of the temporal span over which butterflies have evolved. Recently there has been surge of phylogenetic hypotheses for various butterfly groups, but estimating ages of divergence is still in its infancy for this group of insects. The main problem has been the sparse fossil record for butterflies. In this study I have used a surprisingly good fossil record for the subfamily Nymphalinae (Lepidoptera: Nymphalidae) to estimate the ages of diversification of major lineages using Bayesian relaxed clock methods. I have investigated the effects of varying priors on posterior estimates in the analyses. For this data set, it is clear that the prior of the rate of molecular evolution at the ingroup node had the largest effect on the results. Taking this into account, I have been able to arrive at a plausible history of lineage splits, which appears to be correlated with known paleogeological events. The subfamily appears to have diversified soon after the K/T event about 65 million years ago. Several splits are coincident with major paleogeological events, such as the connection of the African and Asian continents about 21 million years ago and the presence of a peninsula of land connecting the current Greater Antilles to the South American continent 35 to 33 million years ago. My results suggest that the age of Nymphalidae is older than the 70 million years speculated to be the age of butterflies as a whole.  相似文献   

20.
The order of Carnivora has been very well characterized with over 50 species analyzed by chromosome painting and with painting probe sets made for 9 Carnivora species. Representatives of almost all families have been studied with few exceptions (Otariidae, Odobenidae, Nandiniidae, Prionodontidae). The patterns of chromosome evolution in Carnivora are discussed here. Overall, many Carnivora species retained karyotypes that only slightly differ from the ancestral carnivore karyotype. However, there are at least 3 families in which the ancestral carnivore karyotype has been severely rearranged - Canidae, Ursidae and Mephitidae. Here we report chromosome painting of yet another Carnivora species with a highly rearranged karyotype, Genetta pardina. Recurrent rearrangements make it difficult to define the ancestral chromosomal arrangement in several instances. Only 2 species of pangolins (Pholidota), a sister order of Carnivora, have been studied by chromosome painting. Future use of whole-genome sequencing data is discussed in the context of solving the questions that are beyond resolution of conventional banding techniques and chromosome painting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号