首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An imbalance in the matrix metalloproteinase (MMP) : tissue inhibitor of MMP (TIMP) ratio may be associated with tissue injury. Here, we studied the regulation of TIMP and MMP gene expression in primary glial cultures to ascertain the factors involved in the regulation of these genes in conditions of inflammatory neuropathology. Astrocytes were found to basally express TIMP-1 and TIMP-3 mRNA while microglia expressed only TIMP-2 mRNA. TIMP-4 mRNA was not detectable in either cell type. Treatment with interferon-alpha (IFN-alpha), IFN-gamma, interleukin-3 (IL-3), IL-6 or tumor necrosis factor-alpha (TNF-alpha) did not alter expression of the TIMP genes. However, in astrocytes, but not in microglia, serum, IL-1beta or lipopolysaccharide (LPS) evoked a dose- and time-dependent increase in TIMP-1 mRNA and a coincident down-regulation of the TIMP-3 gene. Astrocytes were found to express mRNA constitutively for MMPs -3, -11 and -14. In contrast, microglia expressed only MMP-12 mRNA under basal conditions. IL-1beta enhanced MMP-3 mRNA levels while LPS increased the MMP-3, -9, -12, -13 and -14 mRNAs. Our findings reveal that regulatory control of TIMP and MMP gene expression by glial cells is agonist- and cell-type specific, and suggest that innate immune signals govern the temporal and spatial expression patterns of TIMP and MMP genes in neuroinflammatory conditions of the CNS.  相似文献   

2.
Thioredoxin (Trx) inhibited tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 activity with an approximate IC50 of 0.3 microM, matrix metalloproteinase (MMP)-2 activity with an approximate IC50 of 2 microM but did not inhibit MMP-9 activity. This differential capacity of Trx to inhibit TIMP and MMP activity resulted in the promotion of MMP-2 and MMP-9 activity in the presence of molar TIMP excess. Inhibition of TIMP and MMP-2 activity by Trx was dependent upon thioredoxin reductase (TrxR), was abolished by Trx catalytic site mutation and did not result from TIMP or MMP-2 degradation. HepG2 hepatocellular carcinoma cells induced to secrete Trx inhibited TIMP activity in the presence of TrxR. SK-N-SH neuroblastoma cells secreted TrxR, which inhibited TIMP and MMP-2 activity in the presence of Trx. Trx stimulated SK-N-SH invasive capacity in vitro in the absence of exogenous TrxR. This study therefore identifies a novel extracellular role for the thioredoxin/thioredoxin reductase redox system in the differential inhibition of TIMP and MMP activity and provides a novel mechanism for altering the TIMP/MMP balance that is of potential relevance to tumor invasion.  相似文献   

3.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

4.
The role of membrane-type (MT) 2-matrix metalloproteinase (MMP) in the cellular activation of MMP-2 and the tissue inhibitor of matrix metalloproteinase (TIMP) requirements for this process have not been clearly established. To address these issues a TIMP-2-free cell line derived from a Timp2-/- mouse was transfected for stable cell surface expression of hMT2-MMP. Untransfected cells did not activate endogenous or exogenous TIMP-2-free MMP-2 unless both TIMP-2 and concanavalin A (ConA) were added. Transfected cells expressing hMT2-MMP efficiently activated both endogenous and exogenous MMP-2 (within 4 h) via the 68-kDa intermediate in the absence of TIMP-2 and ConA. In contrast, activation of MMP-2 by Timp2-/- cells expressing recombinant hMT1-MMP occurred more slowly (12 h) and required the addition of 0.3-27 nm TIMP-2. Addition of TIMP-2 or TIMP-4 did not enhance MMP-2 activation by MT2-MMP at any concentration tested; furthermore, activation was inhibited by both TIMPs at concentrations >9 nm, consistent with the similar association rate constants (k(on)) calculated for the binding of TIMP-4 and TIMP-2 to MT2-MMP (3.56 x 10(5) m(-1) s(-1) and 6.52 x 10(5) m(-1) s(-1), respectively). MT2-MMP-mediated activation involved cell surface association of the MMP-2 in a hemopexin carboxyl-terminal domain (C domain)-dependent manner: Exogenous MMP-2 hemopexin C domain blocked activation, and cells expressing hMT2-MMP did not bind or activate a truncated form of MMP-2 lacking the hemopexin C domain. These studies demonstrate the existence of an alternative TIMP-2-independent pathway for MMP-2 activation involving MT2-MMP, which may be important in mediating MMP-2 activation in specific tissues or pathologies where MT2-MMP is expressed.  相似文献   

5.
6.
7.
Remodeling by its very nature implied synthesis and degradation of extracellular matrix (ECM) proteins. Although oxidative stress, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) have been implicated in vascular remodeling, the differential role of MMPs versus TIMPs and oxidative stress in vascular remodeling was unclear. TIMP-3 induced vascular cell apoptosis, therefore, we hypothesized that during vascular injury TIMP-3, MMP-9 and -12 (elastin-degrading MMP) were increased, whereas MMP-2 (constitutive MMP) and TIMP-4 (cardioprotective TIMP) decreased. Because of the potent anti-oxidant, vasorelaxing, anti-hypertensive agent, hydrogen sulfide (H2S) was used to mitigate the vascular remodeling due to the differential expression of MMP and TIMP. Carotid artery injury was created by inserting a PE-10 catheter and rotating several times before pulling out. The insertion hole was sealed. Mice were grouped: wild type (WT), wild-type damaged artery (WTD), WT + NaHS (sodium hydrogen sulfide, precursor of H2S) treatment (30 μmol/L in drinking water/6 weeks) and WTD + NaHS treatment. Carotid arteries were analyzed for oxidative stress and remodeling, by measuring super oxide dismutase-1 (SOD1), p47 (NADPH oxidase subunit), nitrotyrosine, MMPs and TIMPs by in situ immunolabeling and by Western blot analyses. The results suggested robust increase in p47, nitrotyrosine, MMP-9, MMP-12, TIMP-3 and decrease in SOD1 and MMP-2 levels in the injured arteries. The treatment with H2S ameliorated these effects. We concluded that p47, TIMP-3, MMP-9 and -12 were increased where as SOD-1, MMP-2 and TIMP-4 were decreased in the injured arteries. The treatment with H2S mitigated the vascular remodeling by normalizing the levels of redox stress, MMPs and TIMPs.  相似文献   

8.
We found that thrombospondin-1 (TSP-1) has opposite functions on angiogenesis depending on the nature of the proteolytic fragment released in vivo by the action of proteases. We studied the effect of the 25 and 140 kDa fragments of TSP-1 generated by its proteolytic cleavage on the cascade of mitogen activated protein kinase (MAPK) activation and matrix-metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) function and expression in microvascular endothelium. Post-capillary endothelial cells (CVEC) isolated from bovine heart were used. The 25 kDa fragment enhanced the upregulation of MMP-2 and -9 and reduced TIMP-2 expression leading to CVEC chemoinvasion. Conversely, the 140 kDa fragment blocked MMP-2 and -9 stimulation and doubled TIMP-2 expression, leading to inhibition of endothelial chemoinvasion induced by fibroblast growth factor-2 (FGF-2). MAPK activity (ERK1-2) was induced by TSP-1 and by the 25 kDa fragment, but not by the 140 kDa fragment which, however, promoted MAPK p38 activation. This evidence indicates that fragments originating from TSP-1 switch the pro- or anti-angiogenic phenotype in endothelium by targeting MAPK cascades with opposite functions on MMP/TIMP balance.  相似文献   

9.
Fibroblast proliferation and extracellular matrix accumulation characterize idiopathic pulmonary fibrosis (IPF). We evaluated the presence of tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, and -4; collagenase-1, -2, and -3; gelatinases A and B; and membrane type 1 matrix metalloproteinase (MMP) in 12 IPF and 6 control lungs. TIMP-1 was found in interstitial macrophages and TIMP-2 in fibroblast foci. TIMP-3 revealed an intense staining mainly decorating the elastic lamina in vessels. TIMP-4 was expressed in IPF lungs by epithelial and plasma cells. TIMP-2 colocalized with Ki67 in fibroblasts, whereas TIMP-3 colocalized with p27 in inflammatory and epithelial cells. Collagenase-1 was localized in macrophages and alveolar epithelial cells, collagenase-2 was localized in a few neutrophils, and collagenase-3 was not detected. MMP-9 was found in neutrophils and subepithelial myofibroblasts. Myofibroblast expression of MMP-9 was corroborated in vitro by RT-PCR. MMP-2 was noticed in myofibroblasts, some of them close to areas of basement membrane disruption, and membrane type 1 MMP was noticed in interstitial macrophages. These findings suggest that in IPF there is higher expression of TIMPs compared with collagenases, supporting the hypothesis that a nondegrading fibrillar collagen microenvironment is prevailing.  相似文献   

10.
Tsai HC  Ye SY  Kunin CM  Lee SS  Wann SR  Tai MH  Shi MH  Liu YC  Chen YS 《Cytokine》2011,54(2):109-116
The potential mechanisms for altered matrix metalloproteinase (MMP) or tissue inhibitors of matrix metalloproteinase (TIMP) function in patients with syphilis and HIV-1 co-infection (HIV-S) was unclear. To determine the expression of MMP-2, 9 and TIMP-1, 2, 4 in the serum and cerebrospinal fluid (CSF) of HIV-S patients, a total of 20 HIV-S patients and 8 controls were enrolled in a HIV-1 clinical cohort for diagnosis of neurosyphilis in Taiwan. Serum and CSF concentrations of MMP-2, 9, and TIMP-1, 2, 4 were determined by ELISA. Gelatin zymography was used to detect the expression of MMP-2 and MMP-9 in the CSF. Neurosyphilis was defined as a CSF white blood cell count ≥ 20 cells/μL or a reactive CSF Venereal Disease Research Laboratory (VDRL). All the patients with HIV-S were males. Most (85%) had sex with men (MSM) and serum rapid plasma reagin (RPR) titers of ≥ 1:32. The median age was 35 years (IQR 30-43). The median CD4 T cell counts at the time of the diagnosis of syphilis were 270 cells/μL (IQR 96-484). Ten patients (50%) had neurosyphilis based on a reactive CSF VDRL test (n=8) or increased CSF white cell counts ≥ 20/μL (n=2). The concentrations of CSF MMP-9, TIMP-1, and TIMP-2 were significantly higher in patients with HIV-S than the controls (P<0.05). The CSF TIMP-4 concentrations were significantly lower in those with HIV-S (452 pg/ml) than controls (3101 pg/ml), P<0001. There were no significant differences in serum concentrations between the groups. The only finding that distinguished HIV-1 patients with from those without neurosyphilis is a significant higher expression of CSF MMP-9. In conclusion, the MMP/TIMP system was found to be dysregulated in patients with HIV-S regardless of whether they met the laboratory definition of neurosyphilis. The CSF level of MMP-9 was the only measure that distinguished those with or without neurosyphilis.  相似文献   

11.
12.
13.
In peripheral blood mononuclear cells (PBMC), matrix metalloproteinase (MMP)-9 mediates the extravasation of immune cells and may be involved in tissue destruction during inflammation. We investigated the effect of the pro-inflammatory cytokines interleukin (IL-)12 and 15 on the secretion of MMP-9 in PBMC. IL-15, but not IL-12, induces MMP-9 in PBMC and in T cells. Moreover, the combination of IL-15 and IL-2 had an additive effect. In contrast, both IL-12 and IL-15 induced the release of tissue inhibitor of metalloproteinases (TIMP)-1. IL-15 led to a dose-dependent increase of the MMP-9/TIMP-1 ratio as a measure for increased proteolytic capacity. We conclude that IL-15 mediates its effects in inflammation in part through MMP-9.  相似文献   

14.
The important and distinct contribution that membrane type 2 (MT2)-matrix metalloproteinase (MMP) makes to physiological and pathological processes is now being recognized. This contribution may be mediated in part through MMP-2 activation by MT2-MMP. Using Timp2-/- cells, we previously demonstrated that MT2-MMP activates MMP-2 to the fully active form in a pathway that is TIMP-2-independent but MMP-2 hemopexin carboxyl (C) domain-dependent. In this study cells expressing MT2-MMP as well as chimera proteins in which the C-terminal half of MT2-MMP and MT1-MMP were exchanged showed that the MT2-MMP catalytic domain has a higher propensity than that of MT1-MMP to initiate cleavage of the MMP-2 prodomain in the absence of TIMP-2. Although we demonstrate that MT2-MMP is a weak collagenase, this first activation cleavage was enhanced by growing the cells in type I collagen gels. The second activation cleavage to generate fully active MMP-2 was specifically enhanced by a soluble factor expressed by Timp2-/- cells and was MT2-MMP hemopexin C domain-dependent; however, the RGD sequence within this domain was not involved. Interestingly, in the presence of TIMP-2, a MT2-MMP.MMP-2 trimolecular complex formed, but activation was not enhanced. Similarly, TIMP-3 did not promote MT2-MMP-mediated MMP-2 activation but inhibited activation at higher concentrations. This study demonstrates the influence that both the catalytic and hemopexin C domains of MT2-MMP exert in determining TIMP independence in MMP-2 activation. In tissues or pathologies characterized by low TIMP-2 expression, this pathway may represent an alternative means of rapidly generating low levels of active MMP-2.  相似文献   

15.
In tuberculosis, matrix metalloproteinase (MMP) secretion is involved in leukocyte migration to sites of infection but in excess may contribute to tissue destruction. We demonstrate that human monocytic THP-1 cells and primary monocytes secrete MMP-1 (52 kD collagenase) when phagocytosing live, virulent M. tuberculosis but not inert latex. The magnitude of MMP-1 secretion was approximately 10-fold less when compared to MMP-9 (92 kD gelatinase) secretion. MMP-1 secretion was also relatively delayed (detected at 24 h vs. 4 h). M. tuberculosis, zymosan or latex stimulate similar TIMP-1 secretion within 8 h and increasing over 24 h. MMP-1/9 secretion was decreased by inhibitors of protein kinase (PK) C, PKA or tyrosine kinases (PTK) in a concentration-dependent manner. In contrast, TIMP-1 secretion was not affected by PKC or PTK blockade and only somewhat reduced by high level PKA inhibition. In summary, M. tuberculosis-infected monocytes secrete MMP-1 at lower concentrations than MMP-9 and such MMP secretion is regulated by multiple upstream signalling pathways which do not control TIMP-1 secretion. Divergent effects of i on MMP and TIMP secretion from monocytes may be important in influencing matrix degradation in vivo.  相似文献   

16.
Background aimsThe transmigratory capacity of bone marrow (BM) mesenchymal stromal cells (MSC) through the endothelial cell barrier into various tissues and their differentiation potential makes them ideal candidates for cell therapy. Nevertheless, the mechanisms and agents promoting their migration are not fully understood. We evaluated the effects of several inflammatory cytokines on the migration of BM MSC and matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) production.MethodsThe migratory potential of BM MSC was evaluated using a Boyden chamber coated with Matrigel® in the presence and absence of stromal cell-derived (SDF)-1α, platelet-derived growth factor (PDGF)bb, insulin-like growth factor (IGF)-I and interleukin (IL)-6. The ability of inflammatory cytokines to induce MSC migration was tested in presence of their respective Ab or blocking peptide. We used immunofluorescence to check the expression of cytokine receptors, and MMP/TIMP production was analyzed at the protein (human cytokine array, enzyme-linked immunosorbent assay (ELISA), gelatine zymography and Western blot) and mRNA quantitative real-time polymerase chain reaction (qRT-PCR) levels.ResultsWe have demonstrated that inflammatory cytokines promote the migratory capacity of BM MSC according to the expression of their respective receptors. Higher migration through Matrigel was observed in response to IL-6 and PDGFbb. qRT-PCR and cytokine array revealed that migration was the result of the variable level of MMP/TIMP in response to inflammatory stimuli.ConclusionsOur observations suggest that chemokines and cytokines involved in the regulation of the immunity or inflammatory process promote the migration of MSC into BM or damaged tissues. One of the mechanisms used by MSC to promote their migration though the extracellular matrix is modulation of the production of MMP-1, MMP-2, MMP-13, TIMP-1 and TIMP-2.  相似文献   

17.
To investigate simultaneously localization and relative activity of MMPs during extracellular matrix (ECM) remodeling in bleomycin-induced pulmonary fibrosis in rat, we analyzed the time course of the expression, activity and/or concentration of gelatinases MMP-2 and MMP-9, collagenase MMP-1, matrylisin MMP-7, TIMP-1 and TIMP-2, both in alveolar space (cellular and extracellular compartments) and in lung tissue. MMP and TIMP expression was detected (immunohistochemistry) in lung tissue. MMP activity (zymography) and TIMP concentration (ELISA) were evaluated in lung tissue homogenate (LTH), BAL supernatant (BALs) and BAL cell pellet (BALp) 3, 7, 14, and 28 days after bleomycin intratracheal instillation. Immunohistochemistry showed an extensive MMP and TIMP expression from day 7 in a wide range of structural and inflammatory cells in treated rats. MMP-2 was present mainly in epithelia, MMP-9 in inflammatory cells. MMP-2 and MMP-9 activity was increased respectively in BAL fluid and BAL cells, with a peak at day 7. TIMP-1 and TIMP-2 concentration (ELISA) enhancement was delayed at day 14. In conclusion gelatinases and their inhibitors are significantly activated during bleomycin-induced pulmonary fibrosis. Marked changes in gelatinases activity are observed early in the alveolar compartment, with a prevailing extracellular activity of MMP-2 and a predominant intracellular distribution of MMP-9, while enzyme activity changes in lung parenchyma were less evident. In the repairing phase the reduction of gelatinases activity is synchronous with a peak of alveolar concentration of their inhibitors.  相似文献   

18.
L Zheng  Y Huang  W Song  X Gong  M Liu  X Jia  G Zhou  L Chen  A Li  Y Fan 《Journal of biomechanics》2012,45(14):2368-2375
Matrix metalloproteinase (MMP)-1, 2, with their endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1, 2 are critical for extracellular matrix remodeling in human periodontal ligament (PDL) and their expression are sensitive to mechanical stresses. Shear stress as the main type of mechanical stress in tooth movement is involved in matrix turnover. However, how shear stress regulates MMPs and TIMPs system is still unclear. In this study, we investigated the effect of fluid shear stress on expression of MMP-1, 2 and TIMP-1, 2 in human PDL cells and the possible roles of mitogen-activated protein kinases in this process. Three levels of fluid shear stresses (6, 9 and 12dyn/cm(2)) were loaded on PDL cells for 2, 4, 8 and 12h. The results indicated that fluid shear stress rearranged cytoskeleton in PDL cells. Fluid shear stress increased expression of MMP-1, 2, TIMP-1 and suppressed TIMP-2 expression. MAP kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were activated rapidly by fluid shear stress. The ERK inhibitor blocked fluid shear stress induced MMP-1 expression and P38 inhibitor reduced fluid shear stress stimulated MMP-2 expression. Our study suggested that fluid shear stress involved in PDL remodeling via regulating MMP-1, 2 and TIMP-1, 2 expression. ERK regulated fluid shear stress induced MMP-1 expression and P38 play a role in fluid shear stress induced MMP-2 upregulation.  相似文献   

19.
The insulin-like growth factors 2 (IGF2) is a peptide hormone that binds to the insulin-like growth factor 1 receptor (IGF1R) and is abundantly stored in bone. IGF1R is deeply involved in the pathogenesis of many cancers that growth within bone and is also involved in osteoclast biology. Among different cell lines representative of osteolytic tumors, we found a very high expression of IGF2 in SH-SY5Y cells derived from neuroblastoma (NB). We previously showed that NB cells induce an osteolytic process through the Osteoprotegerin/RANKL/RANK and the canonical Wnt pathway system. Here, we hypothesized that NB promotes osteoclastogenesis also via IGF2. First, we demonstrated the presence of IGF1R on the osteoclast basolateral membrane, and we observed a cyclic IGF1R activation along with the differentiation process, also when induced by SH-SY5Y. Moreover, we found that IGF2 mRNA expression in SH-SY5Y cells was further increased when co-cultured with mesenchymal stromal cells, suggesting that IGF2 is important for NB interaction with the bone microenvironment. Finally, the treatment of SH-SY5Y cells with an anti-IGF2 siRNA or the addition of anti-IGF1R molecules impaired NB-induced osteoclastogenesis, even though the chemoattraction of monocytes by NB cells was unaffected. Our findings suggest that in IGF2-producing osteolytic tumors IGF1R is a good candidate for targeted therapies in combination with conventional drugs.  相似文献   

20.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) need to be finely modulated in physiological processes. However, oxygen tension influences MMP/TIMP balances, potentially leading to pathology. Intriguingly, new 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNDs) have proven effective in abrogating hypoxia-dependent dysregulation of MMP and TIMP secretion by single cell populations. This work explored the effects of different oxygen tensions and dextran-shelled OLNDs on MMP/TIMP production in an organized and multicellular tissue (term human placenta). Chorionic villous explants from normal third-trimester pregnancies were incubated with/without OLNDs in 3 or 20% O2. Explants cultured at higher oxygen tension released constitutive proMMP-2, proMMP-9, TIMP-1, and TIMP-2. Hypoxia significantly altered MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios enhancing TIMP-2 and reducing proMMP-2, proMMP-9, and TIMP-1 levels. Intriguingly, OLNDs effectively counteracted the effects of low oxygen tension. Collectively, these data support OLND potential as innovative, nonconventional, and cost-effective tools to counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号