首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion of an anonymous DNA sample into numerous oligonucleotides is enzymatically feasible using an unusual restriction endonuclease, CviJI. Depending on reaction conditions, CviJI is capable of digesting DNA at a two or three base recognition sequence. CviJI normally cleaves RGCY sites between the G and C to leave blunt ends. Under 'relaxed' conditions CviJI* cleaves RGCY, and RGCR/YGCY, but not YGCR sites. In theory, CviJI* restriction of pUC19 (2686 bp) should produce 157 fragments, 75% of which are smaller than 20 bp. Instead, 96% of the CviJI* fragments were 18-56 bp long and none of the fragments were smaller than 18 bp. Thermal denaturation of these fragments generates sequence specific oligonucleotides homologous for the cognate template. The enzymatic conversion of anonymous DNA into sequence specific oligomers has implications for several conventional and novel molecular biology procedures.  相似文献   

2.
A type II restriction endonuclease, named CviJI, was isolated from a eukaryotic Chlorella-like green alga infected with the dsDNA containing virus IL-3A. CviJI is the first restriction endonuclease to recognize the sequence PuGCPy; CviJI cleaves DNA between the G and C. Methylation of the cytosine in PuGCPy sequences prevents cleavage by CviJI. CviJI cleaved DNA into smaller but defined fragments in the presence of ATP. This "star" activity was stimulated by dithiothreitol and/or S-adenosylmethionine but did not occur under conditions which favor "star" activity of other restriction endonucleases.  相似文献   

3.
The cloning and expression of the CviPII DNA nicking and modification system encoded by chlorella virus NYs-1 is described. The system consists of a co-linear MTase encoding gene (cviPIIM) and a nicking endonuclease encoding gene (cviPIINt) separated by 12 nt. M.CviPII possesses eight conserved amino acid motifs (I to VIII) typical of C5 MTases, but, like another chlorella virus MTase M.CviJI, lacks conserved motifs IX and X. In addition to modification of the first cytosine in CCD (D = A, G or T) sequences, M.CviPII modifies both the first two cytosines in CCAA and CCCG sites as well. Nt.CviPII has significant amino acid sequence similarity to Type II restriction endonuclease CviJI that recognizes an overlapping sequence (RG--CY). Nt.CviPII was expressed in Escherichia coli with or without a His-tag in a host pre-modified by M.CviPII. Recombinant Nt.CviPII recognizes the DNA sequence CCD and cleaves the phosphodiester bond 5' of the first cytosine while the other strand of DNA at this site is not affected. Nt.CviPII displays site preferences with CCR (R = A or G) sites preferred over CCT sites. Nt.CviPII is active from 16 to 65 degrees C with a temperature optimum of 30-45 degrees C. Nt.CviPII can be used to generate single-stranded DNAs (ssDNAs) for isothermal strand-displacement amplification. Nt.CviPII was used in combination with Bst DNA polymerase I large fragment to rapidly amplify anonymous DNA from genomic DNA or from a single bacterial colony.  相似文献   

4.
5.
Abstract The gene for the Aeromonas salmonicida maltose-inducible porin (maltoporin) was cloned into phagemid pTZ18R in two restriction fragments, 0.6-kb Pst I/ Kpn I and 1.7-kb Sph I, of genomic DNA and their nucleotide sequences were determined. Open reading frames of 1329 and 1335 bp translated into sequences of 443 and 445 amino acids, with a 23 or 25 amino acid signal sequence and a 420 amino acid mature protein of molecular mass 46424 Da. Putative ribosome binding sites, AGGA and GGGAA, occurred 9 bp upstream of two possible ATG initiation codons. The A. salmonicida gene product showed a high degree of similarity with Escherichia coli LamB, and codon usage was very similar to that of another A. salmonicida outer membrane protein but markedly different from those of extracellular proteins.  相似文献   

6.
The nucleotide sequence of part of the tra region of R100 including traJ and traY was determined, and the products of several tra genes were identified. The nucleotide sequence of traJ, encoding a protein of 223 amino acids, showed poor homology with the corresponding segments of other plasmids related to R100, but the deduced amino acid sequences showed low but significant homology. The first four amino acids at the N-terminal region of the TraJ protein were not essential for positive regulation of expression of traY, the first gene of the traYZ operon. The nucleotide sequence of traY shows that this gene may use TTG as the initiation codon and that it encodes a protein of 75 amino acids. Analysis of the traY gene product, which was obtained as the fusion protein with beta-galactosidase, showed that the N-terminal region of the product has an amino acid sequence identical to that deduced from the assigned frame but lacks formylmethionine. traY of plasmid F, which encodes a larger protein than the TraY protein of R100, is thought to use ATG as an initiation codon. However, a TTG initiation codon was found in the preceding region of the previously assigned traY coding frame of F. Interestingly, when translation of traY of F was initiated from TTG, the amino acid sequence homologous to the TraY protein of R100 appeared in tandem in the TraY protein of F. This may suggest that traY of F has undergone duplication of a gene like the traY gene of R100.  相似文献   

7.
StsI endonuclease (R.StsI), a type IIs restriction endonuclease found in Streptococcus sanguis 54, recognizes the same sequence as FokI but cleaves at different positions. A DNA fragment that carried the genes for R.StsI and StsI methylase (M.StsI) was cloned from the chromosomal DNA of S.sanguis 54, and its nucleotide sequence was analyzed. The endonuclease gene was 1,806 bp long, corresponding to a protein of 602 amino acid residues (M(r) = 68,388), and the methylase gene was 1,959 bp long, corresponding to a protein of 653 amino acid residues (M(r) = 76,064). The assignment of the endonuclease gene was confirmed by analysis of the N-terminal amino acid sequence. Genes for the two proteins were in a tail-to-tail orientation, separated by a 131-nucleotide intercistronic region. The predicted amino acid sequences between the StsI system and the FokI system showed a 49% identity between the methylases and a 30% identity between the endonucleases. The sequence comparison of M.StsI with various methylases showed that the N-terminal half of M.StsI matches M.NIaIII, and the C-terminal half matches adenine methylases that recognize GATC and GATATC.  相似文献   

8.
9.
The primary structure of the E. coli rpoC gene (5321 base pairs) coding the beta'-subunit of RNA polymerase as well as its adjacent segment have been determined. The structure analysis of the peptides obtained by cleavage of the protein with cyanogen bromide and trypsin has confirmed the amino acid sequence of the beta'-subunit deduced from the nucleotide sequence analysis. The beta'-subunit of E. coli RNA polymerase contains 1407 amino acid residues. Its translation is initiated by codon GUG and terminated by codon TAA. It has been detected that the sequence following the terminating codon is strikingly homologous to known sequences of rho-independent terminators.  相似文献   

10.
The type IIS/IIC restriction endonuclease TspGWI recognizes the sequence 5'-ACGGA-3', cleaving DNA 11/9 nucleotides downstream. Here we show that sinefungin, a cofactor analog of S-adenosyl methionine, induces a unique type of relaxation in DNA recognition specificity. In the presence of sinefungin, TspGWI recognizes and cleaves at least 12 degenerate variants of the original recognition sequence that vary by single base pair changes from the original 5-bp restriction site with only a single degeneracy per variant appearing to be allowed. In addition, sinefungin was found to have a stimulatory effect on cleavage at these nondegenerate TspGWI recognition sites, irrespective of their number or the DNA topology. Interestingly, no fixed "core" could be identified among the new recognition sequences. Theoretically, TspGWI cleaves DNA every 1024 bp, while sinefungin-induced activity cleaves every 78.8 bp, corresponding to a putative 3-bp long recognition site. Thus, the combination of sinefungin and TspGWI represents a novel frequent cutter, next only to CviJI/CviJI*, that should prove useful in DNA cloning methodologies.  相似文献   

11.
The regulatory (R) subunit of cAMP-dependent protein kinase from the yeast Saccharomyces cerevisiae was expressed in Escherichia coli by engineering the gene for yeast R, BCY1, into an E. coli expression vector that contained a promoter from phage T7. Oligonucleotide-directed mutagenesis was used to create an NdeI restriction site at the natural ATG of the yeast R. This facilitated construction of the T7 expression vector so that the sequence of the protein produced was identical to the natural R subunit. Yeast R was highly expressed in a soluble form. 20 mg of purified yeast R was obtained from 4 liters of E. coli. N-terminal amino acid sequencing revealed that the expressed protein began with the natural sequence. 60% of the molecules contained an N-terminal methionine, and 40% initiated with valine, the second amino acid of yeast R. The protein produced in E. coli migrated on a sodium dodecyl sulfate-polyacrylamide gel with an Mr of 52,000. The yeast R bound 2 mol of cAMP/mol of R monomer with a Kd of 76 nM. The protein was treated with urea to remove bound cAMP. Sedimentation values before and after the urea treatment were identical (s20,w = 5.1). Addition of purified R subunit to a preparation of yeast C subunit (TPK1) rendered catalytic activity cAMP-dependent with an activity ratio of 4.6. The yeast R was autophosphorylated by yeast C to a level of 0.8 mol of phosphate/mol of R monomer. By these criteria, the R subunit produced in E. coli was structurally and functionally identical to the natural yeast R subunit and similar to mammalian type II R subunits.  相似文献   

12.
The EcoRV restriction/modification system consists of two enzymes that recognize the DNA sequence GATATC. The EcoRV restriction endonuclease cleaves DNA at this site, but the DNA of Escherichia coli carrying the EcoRV system is protected from this reaction by the EcoRV methyltransferase. However, in vitro, the EcoRV nuclease also cleaves DNA at most sites that differ from the recognition sequence by one base pair. Though the reaction of the nuclease at these sites is much slower than that at the cognate site, it still appears to be fast enough to cleave the chromosome of the cell into many fragments. The possibility that the EcoRV methyltransferase also protects the noncognate sites on the chromosome was examined. The modification enzyme methylated alternate sites in vivo, but these were not the same as the alternate sites for the nuclease. The excess methylation was found at GATC sequences, which are also the targets for the dam methyltransferase of E. coli, a protein that is homologous to the EcoRV methyltransferase. Methylation at these sites gave virtually no protection against the EcoRV nuclease: even when the EcoRV methyltransferase had been overproduced, the cellular DNA remained sensitive to the EcoRV nuclease at its noncognate sites. The viability of E. coli carrying the EcoRV restriction/modification system was found instead to depend on the activity of DNA ligase. Ligase appears to proofread the EcoRV R/M system in vivo: DNA, cut initially in one strand at a noncognate site for the nuclease, is presumably repaired by ligase before the scission of the second strand.  相似文献   

13.
J A Wells  M Vasser  D B Powers 《Gene》1985,34(2-3):315-323
A method is described for the efficient insertion of mutagenic oligodeoxynucleotide cassettes which allow saturation of a target amino acid codon with multiple mutations. Restriction sites are introduced by oligonucleotide-directed mutagenesis procedures to flank closely the target codon in the plasmid containing the gene. The restriction sites to be introduced are chosen based on their uniqueness to the plasmid, proximity to the target codon and conservation of the final amino acid coding sequence. The flanking restriction sites in the plasmid are digested with the cognate restriction enzymes, and short synthetic duplex DNA cassettes (10-25 bp) are inserted. The mutagenic cassette is designed to restore fully the wild-type coding sequence, except over the target codon, and to eliminate one or both restriction sites. Elimination of a restriction site facilitates selection of clones containing the mutagenic oligodeoxynucleotide cassette. To make the cassettes, single-stranded oligodeoxynucleotides and their complements are synthesized in separate pools containing different codons over the target. This method has been successfully applied to generate 19 amino acid substitutions at position 222 in the subtilisin protein sequence.  相似文献   

14.
The enzymes of the Bacillus subtilis BsuBI restriction/modification (R/M) system recognize the target sequence 5'CTGCAG. The genes of the BsuBI R/M system have been cloned and sequenced and their products have been characterized following overexpression and purification. The gene of the BsuBI DNA methyltransferase (M.BsuBI) consists of 1503 bp, encoding a protein of 501 amino acids with a calculated M(r) of 57.2 kD. The gene of the restriction endonuclease (R.BsuBI), comprising 948 bp, codes for a protein of 316 amino acids with a predicted M(r) of 36.2 kD. M.BsuBI modifies the adenine (A) residue of the BsuBI target site, thus representing the first A-N6-DNA methyltransferase identified in B. subtilis. Like R.PstI, R.BsuBI cleaves between the A residue and the 3' terminal G of the target site. Both enzymes of the BsuBI R/M system are, therefore, functionally identical with those of the PstI R/M system, encoded by the Gram negative species Providencia stuartii. This functional equivalence coincides with a pronounced similarity of the BsuBI/PstI DNA methyltransferases (41% amino acid identity) and restriction endonucleases (46% amino acid identity). Since the genes are also very similar (58% nucleotide identity), the BsuBI and PstI R/M systems apparently have a common evolutionary origin. In spite of the sequence conservation the gene organization is strikingly different in the two R/M systems. While the genes of the PstI R/M system are separated and transcribed divergently, the genes of the BsuBI R/M system are transcribed in the same direction, with the 3' end of the M gene overlapping the 5' end of the R gene by 17 bp.  相似文献   

15.
Endo-beta-1,4-glucanase genes from Bacillus circulans and from B. polymyxa were cloned by direct expression by using bacteriophage M13mp9 as the vector. The enzymatic activity of the gene products was detected by using either the Congo red assay or hydroxyethyl cellulose dyed with Ostazin Brilliant Red H-3B. The B. circulans and B. subtilis PAP115 endo-beta-1,4-glucanase genes were shown to be homologous by the use of restriction endonuclease site mapping, DNA-DNA hybridization, S1 nuclease digestion after heteroduplex formation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the protein products. Analysis of the nucleotide sequence of 3.1 kilobase pairs of cloned B. polymyxa DNA revealed two convergently transcribed open reading frames (ORFs) consisting of 398 codons (endoglucanase) and 187 codons (ORF2) and separated by 374 nucleotides. The coding region of the B. polymyxa endoglucanase gene would theoretically produce a 44-kilodalton preprotein. Expression of the B. polymyxa endoglucanase in Escherichia coli was due to a fusion of the endoglucanase gene at codon 30 with codon 9 of the lacZ alpha-peptide gene. The B. polymyxa endoglucanase has 34% amino acid similarity to the Clostridium thermocellum celB endoglucanase sequence but very little similarity to endoglucanases from other Bacillus species. ORF2 has 28% amino acid similarity to the NH2-terminal half of the E. coli lac repressor protein, which is responsible for DNA binding.  相似文献   

16.
17.
The slyA gene, which has been implicated in the virulence of Salmonella serovar Typhimurium and its survival in macrophages, is widely distributed among different Salmonella serovars. In this study, we cloned and sequenced the translational initiation region of the slyA gene from nine different serovars and found sequence differences in the previously proposed ATG initiation codon but not in a TTG triplet, another putative initiation codon in the slyA gene. Therefore, we determined the actual translational initiation site of the slyA gene by analyzing slyA genes with defined mutation in either the ATG or TTG sequences in an in vitro translation assay and a quantitative hemolytic assay in Escherichia coli. The replacement of TTG by TTC in the slyA gene significantly reduced both the amount of protein synthesized and the hemolytic activity of a transformed strain of E. coli, while replacement of ATG by ATC had no effect in these assays. In addition, the amino acid sequence analysis of the His-tagged SlyA protein showed that it was identical with the amino acid sequence deduced from the 5' end of the slyA gene with a TTG initiation codon. Our results suggest that TTG serves as the translational initiation codon for the slyA gene of Salmonella.  相似文献   

18.
A new approach has been developed for the rapid fragmentation and fractionation of DNA into a size suitable for shotgun cloning and sequencing. The restriction endonuclease CviJI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions which alter the specificity of this enzyme (CviJI**) yield a quasi-random distribution of DNA fragments from the small molecule pUC19 (2686 base pairs). To quantitatively evaluate the randomness of this fragmentation strategy, a CviJI** digest of pUC19 was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lacZ minus M13 cloning vector. Sequence analysis of 76 clones showed that CviJI** restricts PyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation. Advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 micrograms instead of 2-5 micrograms), fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed), and higher cloning efficiencies are obtained (CviJI** digested and column fractionated DNA transforms 3-16 times more efficiently than sonicated, end-repaired, and agarose fractionated DNA).  相似文献   

19.
20.
The multiple antibiotic resistance plasmid R100 renders Escherichia coli resistant to the bactericidal action of serum complement. We constructed a plasmid (pOW3) consisting of a 1,900-base-pair-long restriction fragment from R100 joined to a 2,900-base-pair-long fragment of pBR322 carrying ampicillin resistance. E. coli strains carrying pOW3 or R100 were up to 10,000-fold less sensitive to killing by serum complement than were plasmid-free bacteria or bacteria carrying pBR322. Nucleotide sequencing revealed that 875 of the 1,900 bases from R100 correspond exactly to part of the bacterial insertion sequence IS2. The remaining 1,075 bases contained only one sizeable open reading frame; it covered 729 base pairs (243 amino acids) and was preceded by nucleotide sequences characteristic of bacterial promoters and ribosome binding sites. The first 20 amino acids of the predicted protein showed features characteristic of a signal sequence. The remainder of the predicted protein showed an amino acid composition almost identical with that determined for the traT protein from the E. coli F factor. Southern blot analysis showed that the resistance gene from R100 does not hybridize to the serum resistance gene from ColV,I-K94 isolated by Binns et al.; we concluded that these genes are distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号