首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entrainment patterns of the circadian rhythms of body temperature and locomotor activity were compared in 6 squirrel monkeys (Saimiri sciureus) exposed to daily illumination cycles with abrupt transitions between light and darkness (LD-rectangular) or with gradual dawn and dusk transitions simulating natural twilights at the equator (LD-twilight). Daytime light intensity was 500 lux, and the total amount of light emitted per day was the same in the two conditions. Mean daytime body temperature levels were stable in LD-rectangular but increased gradually in LD-twilight, reaching peak levels during the dusk twilight. Locomotor activity showed a similar pattern, but with an additional, secondary peak near the end of dawn. Activity duration was about 0.5 h longer in LD-twilight than in LD-rectangular, but the time of activity midpoint was similar in the two conditions. Reentrainment of the body temperature rhythm was faster following an 8-h advance of the LD cycle than following an 8-h delay, but did not differ significantly between the two LD conditions. These results provide no evidence that the inclusion of twilight transitions affected the strength of the LD Zeitgeber, and suggest that the observed differences in the daily patterns reflected direct effects of light intensity on locomotor activity and body temperature rather than an effect of twilights on circadian entrainment mechanisms.Abbreviation LD light-dark  相似文献   

2.
Locomotor activity rhythm in the hypogean population of Nemacheilus evezardi was recorded first under light-to-dark (LD) 12 : 12 h cycle and then DD. The results were compared with that of its epigean counterpart held under comparable regimes. In LD 12 : 12, while hypogean loach exhibited a distinct bimodality in its locomotor activity rhythm, it was altogether absent in the case of epigean population. In hypogean loach, dark-to-light transition peak in LD was observed to free-run under DD. The same was not discernible in case of epigean loach. The locomotor activity rhythm in epigean fish was noticed to free-run in DD either from the dawn peak or dusk peak in LD. It is hypothesized that the hypogean fish still possesses a functional oscillator underlying its overt circadian rhythm in locomotor activity. The ecophysiological significance of these findings is yet to be fully understood.  相似文献   

3.
Twelve juvenile pink shrimp, Penaeus duorarum Burkenroad, were tested individually for 3-day periods in electronic shuttleboxes to determine their diel patterns of locomotor activity, in relation to a natural summer photoperiod. Nocturnal activity was twice that exhibited during the daytime; however, a bimodal pattern was evident with crepuscular peaks occurring at dawn and dusk. The dusk peak was more pronounced, with activity increasing markedly before sunset (indicative of an endogenous circadian rhythm component), and continuing during the initial hours of darkness, gradually declining later during the night with a secondary peak at dawn falling off to minimal activity during daylight. Crepuscular activity (mean of dawn and dusk) was twice the nocturnal average.  相似文献   

4.
This study was performed to determine the daily periodicity of urea excretion in the ureogenic gobiid fish Mugilogobius abei. In 20% seawater, urea excretion of all the fish examined showed daily periodic changes under a 12-h light-dark cycle, and some showed a free-running rhythm under constant darkness. This is the first report of a circadian rhythm in urea excretion in fishes. Daily variations in urea excretion under light-dark cycles were also observed under various conditions, i.e. exposure to water ammonia, confinement/non-confinement and solitary/group. Due to the daily variations in urea excretion, urea contents in tissues changed periodically, whereas enzyme activities related to urea synthesis did not change significantly. The index of urea permeability as determined by changes in body urea contents after 2-h immersion of 25 mM urea solution was high during the peak of daily variation in urea excretion. Locomotor activity and urea excretion showed clear daily variations under light-dark cycles, both of which were diurnal. Furthermore, daily variations in urea excretion were maintained even when the diurnal pattern in the locomotor activity was disturbed. These results suggest that periodic urea excretion was mediated by periodic enhancement of permeability for urea at excretion sites.  相似文献   

5.
Summary The biting cycle of Armigeres subalbatus is distinctly crepuscular, exhibiting two peaks of activity, a smaller one at dawn and a larger one at dusk. The biting cycle is entrained to natural light-dark cycles and the time interval from dawn to dawn or dusk to dusk peaks is exactly 24 h and from dawn to dusk or dusk to dawn is about 12 h measured at 50% level. This rhythm manifests itself day after day without any marked qualitative change.The rate of change of light intensity may determine the onset of crepuscular biting. The sudden increase (up to ca. 17 lx) or decrease (down to ca. 4 lx) in the intensity of ambient light at the time of sunrise or sunset coincides with the peak of the biting activity.The density of the population of the host-seeking females fluctuates in relation to the phases of the moon, increasing with the full moon phase and decreasing with the new moon phase.Even though the density of the population is greater outdoors than indoors both at ground levels and in the first floor, the peak of activity occurs at the same time in all the places. A vertical stratification of biting activity was also noticed.  相似文献   

6.
Emerging evidence indicates that, besides dyspnea relief, an improvement in locomotor muscle oxygen delivery may also contribute to enhanced exercise tolerance following normoxic heliox (replacement of inspired nitrogen by helium) administration in patients with chronic obstructive pulmonary disease (COPD). Whether blood flow redistribution from intercostal to locomotor muscles contributes to this improvement currently remains unknown. Accordingly, the objective of this study was to investigate whether such redistribution plays a role in improving locomotor muscle oxygen delivery while breathing heliox at near-maximal [75% peak work rate (WR(peak))], maximal (100%WR(peak)), and supramaximal (115%WR(peak)) exercise in COPD. Intercostal and vastus lateralis muscle perfusion was measured in 10 COPD patients (FEV(1) = 50.5 ± 5.5% predicted) by near-infrared spectroscopy using indocyanine green dye. Patients undertook exercise tests at 75 and 100%WR(peak) breathing either air or heliox and at 115%WR(peak) breathing heliox only. Patients did not exhibit exercise-induced hyperinflation. Normoxic heliox reduced respiratory muscle work and relieved dyspnea across all exercise intensities. During near-maximal exercise, quadriceps and intercostal muscle blood flows were greater, while breathing normoxic heliox compared with air (35.8 ± 7.0 vs. 29.0 ± 6.5 and 6.0 ± 1.3 vs. 4.9 ± 1.2 ml·min(-1)·100 g(-1), respectively; P < 0.05; mean ± SE). In addition, compared with air, normoxic heliox administration increased arterial oxygen content, as well as oxygen delivery to quadriceps and intercostal muscles (from 47 ± 9 to 60 ± 12, and from 8 ± 1 to 13 ± 3 mlO(2)·min(-1)·100 g(-1), respectively; P < 0.05). In contrast, normoxic heliox had neither an effect on systemic nor an effect on quadriceps or intercostal muscle blood flow and oxygen delivery during maximal or supramaximal exercise. Since intercostal muscle blood flow did not decrease by normoxic heliox administration, blood flow redistribution from intercostal to locomotor muscles does not represent a likely mechanism of improvement in locomotor muscle oxygen delivery. Our findings might not be applicable to patients who hyperinflate during exercise.  相似文献   

7.
Melatonin has several known physiological functions, the main one being synchronization of daily and seasonal rhythms. In addition, melatonin has been reported to influence food intake and behavioral rhythms with varying results depending on the species. The aim of this research was to evaluate the effects of intraperitoneal melatonin injection on food intake and locomotor activity in two different fish species: goldfish (diurnal) and tench (nocturnal), under different light regimes: constant light (LL) conditions or LD 12:12, with melatonin administration at mid-light (ML), mid-dark (MD), and after a 1-h light pulse at MD. In addition to these acute tests, in the case of goldfish we also investigated the effects of daily melatonin administration for 1 week. Our results indicated that acute melatonin administration significantly decreased goldfish food intake (16-52% inhibition, depending on the light regime) and locomotor activity (55-100%), with the chronic treatment inducing a similar total food intake inhibition that persisted for 7 days. In tench, a nocturnal fish species, acute melatonin administration at MD and ML reduced food intake (37% and 29%, respectively), while locomotor activity was not affected at MD and slightly increased at ML. Taken together, these results indicated that melatonin reduced food intake in both species, while its effects on locomotor activity depended on the time of administration (light or dark phase) and the activity patterns of the species.  相似文献   

8.
Locomotor activity studies in the laboratory under artificial light cycles co-ordinated with times of sunrise and sunset demonstrated that ten of sixteen Atlantic salmon parr were nocturnal, with an approximately twenty-four hour periodicity. The remaining six fish exhibited diurnal activity patterns or activity mainly after times of light change. Two fish immediately shifted their activity patterns to co-ordinate with a 6-hr shifted light cycle. Six fish retained no activity patterns in constant light, and only two of eleven fish had weak activity patterns in constant darkness. Results suggest that Atlantic salmon parr are dependent on a light-dark cycle for timing their activity rhythms. Three of twelve salmon in an imposed magnetic field four times the strength of the horizontal vector of the ambient field, increased their activity level and changed activity patterns in the increased field. The remaining fish showed no distinct change in locomotor activity.  相似文献   

9.
Light and temperature entrainment of a locomotor rhythm in honeybees   总被引:1,自引:0,他引:1  
Abstract. The circadian locomotor (walking) rhythms of forager honeybees (Apis mellifera ligustica L.) were entrained to eight different 24 h light-dark cycles. The phases of activity onset, peak activity, and offset were correlated with the lights-off transition, suggesting lights-off as the primary zeitgeber for the rhythm. Further support for this hypothesis was provided by LD 1:23 experiments, in which entrainment occurred when the light pulse was situated at the end, but not at the beginning, of the subjective photophase. Steady-state entrainment of the locomotor rhythm was achieved with square-wave temperature cycles of 10oC amplitude under constant dark: most of the activity occurred within the early thermophase. Smaller amplitude temperature cycles yielded relative coordination of the rhythm. Interactions of temperature and light-dark cycles resulted in entrainment patterns different from those elicited in response to either cycle alone or those formed by a simple combination of the two separate responses. Furthermore, temperature cycles having amplitudes insufficient for entrainment of the rhythm nevertheless modified the pattern of entrainment to light - dark cycles, suggesting a synergism of light and temperature effects on the underlying circadian clock system.  相似文献   

10.
Abstract. The diel pattern of locomotor activity in the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) was investigated in the laboratory, using a computer-based infra-red actograph. The level of locomotor activity varied with sex and age. On the day of emergence, females were more active than males, but on days 2, 4, 6 and 12 males were approximately twice as active as females. Males reached their highest activity on day 4 and females on day 12. Both sexes were most active at dusk. Their activity patterns were fitted to a set of polynomial regression models. Treatment with 400 p.p.m. of Juvenile Hormone mimic, fenoxycarb, stimulated locomotor activity and provoked a marked activity peak at dawn in both virgin and mated females. A similar treatment with the ecdysone agonist tebufenozide showed a neutral effect on the locomotor activity of females. Possible implications of these findings are discussed in relation to the physiology of the moth and to its dispersal behaviour.  相似文献   

11.
Ghrelin is implicated in growth and feeding regulation in fish. The influence of ghrelin on behavior has not been well studied and the physiological role of des-fatty acid modification of this peptide is unclear. Therefore, the effects of intracerebroventricular (ICV) and intraperitoneal (IP) administration of synthetic n-octanoylated (acyl) goldfish ghrelin and des-n-octanoylated (des-acyl) ghrelin on locomotor and orexigenic activity in the goldfish were examined. ICV administration of acyl ghrelin at doses of 1 and 2 pmol/g body weight (BW) and IP administration at 16 pmol/g BW both induced significant increases in locomotor activity during for 45-60 min after treatment. Cumulative food intake was significantly increased by ICV injection of acyl ghrelin at doses of 1 and 2 pmol/g BW and IP injection at 8 and 16 pmol/g BW during the 60-min post-treatment observation period. In contrast, ICV and IP administration of des-acyl ghrelin produced no changes in locomotor and orexigenic activity. We also analyzed fasting-induced changes in the expression of ghrelin mRNA in the brain and intestine using a real-time PCR method. The level of ghrelin mRNA in the intestine, but not in the brain, obtained from fish fasted for 7 days was significantly higher than that in fish that had been fed normally. These results suggest that, in the goldfish, acyl ghrelin, but not des-acyl ghrelin, stimulates locomotor activity and enhances food intake via central and peripheral pathways.  相似文献   

12.
TRH is a peptide produced by the hypothalamus which major function in mammals is the regulation of TSH secretion by the pituitary. In fish, TRH does not appear to affect TSH secretion, suggesting that it might regulate other functions. In this study, we assessed the effects of central (intracerebroventricular, icv) injections of TRH on feeding and locomotor behavior in goldfish. TRH at 10 and 100 ng/g, but not 1 ng/g, significantly increased feeding and locomotor behaviors, as indicated by an increase in food intake and in the number of total feeding acts as compared to saline-injected fish. In order to assess possible interactions between TRH and other appetite regulators, we examined the effects of icv injections of TRH on the hypothalamic expression of orexin, orexin receptor and CART. The mRNA expression levels of all three peptides were significantly increased in fish injected with TRH at 100 ng/g as compared to saline-injected fish. Fasting increased TRH, orexin, and orexin receptor hypothalamic mRNA levels and decreased CART hypothalamic mRNA levels. Our results suggest that TRH is involved in the regulation of feeding/locomotor activity in goldfish and that this action is associated with a stimulation of both the orexin and CART systems.  相似文献   

13.
Animals of the amphipod Orchestia montagui are kept in constant darkness with two short light pulses. One pulse is applied at the beginning of subjective night (around the dusk) and the other one at the end of subjective night (around the dawn). The pulse duration is estimated in the order of one or two hours around the dusk as well as the dawn. The locomotor activity rhythm was monitored in individual animals in summer under constant temperature. Results revealed that whatever the experimental conditions, under continuous or interrupted darkness by pulses, two endogenous components have been highlighted. In fact, Periodogram analysis showed the presence of ultradian and circadian periods around 12 and 24 h, respectively. The shortest circadian period and the most important inter-individual variability was observed under pulse of 2 h around the dusk with mean value equal to τDD+pulse = 24h38′ ± 4h34′. The activity profiles are in majority unimodal. Moreover, the most activity peak showed a slipping of its location from the middle of subjective night under constant darkness to the middle of subjective day under pulse. Globally, the locomotor activity rhythm of O. montagui was better defined under pulses and specimens were significantly more active under continuous darkness. Moreover, a great variability around the activity time was observed especially with pulse of 1 h.  相似文献   

14.
In addition to light cycles, temperature cycles are among the most important synchronizers in nature. Indeed, both clock gene expression and circadian activity rhythms entrain to thermocycles. This study aimed to extend our knowledge of the relative strength of light and temperature as zeitgebers for zebrafish locomotor activity rhythms. When the capacity of a 24∶20°C (thermophase∶cryophase, referred to as TC) thermocycle to synchronize activity rhythms under LL was evaluated, it was found that most groups (78%) synchronized to these conditions. Under LD, when zebrafish were allowed to select the water temperature (24°C vs. 20°C), most fish selected the higher temperature and showed diurnal activity, while a small (25%) percentage of fish that preferred the lower temperature displayed nocturnal activity. Under conflicting LD and TC cycles, fish showed diurnal activity when the zeitgebers were in phase or in antiphase, with a high percentage of activity displayed around dawn and dusk (22% and 34% of the total activity for LD/TC and LD/CT, respectively). Finally, to test the relative strength of each zeitgeber, fish were subjected to ahemeral cycles of light (T=25 h) and temperature (T=23 h). Zebrafish synchronized mostly to the light cycle, although they displayed relative coordination, as their locomotor activity increased when light and thermophase coincided. These findings show that although light is a stronger synchronizer than temperature, TC cycles alone can entrain circadian rhythms and interfere in their light synchronization, suggesting the existence of both light‐ and temperature‐entrainable oscillators that are weakly coupled.  相似文献   

15.
A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.  相似文献   

16.
Entrainment of the nocturnal, endogenous locomotor activity rhythm of Talitrus saltator (Montagu) by the natural light-dark cycle is non-parametric, the phase of the rhythm shifting only in response to changes in the time of an experimentally simulated ‘dawn’ transition. The difference in response to light at ‘dusk’ and ‘dawn’ illustrates a phase-dependent responsiveness common to endogenous rhythms. Activity begins after complete darkness, with cessation always occurring during the ‘dawn’ transition and never continuing past the onset of total experimental illumination. The point of activity cessation is taken to be the position of a synchronizing cue controlling entrainment. The ‘dawn’ cue appears to be an absolute irradiance level of approximately 1.5 × 10?4 W/m2 (1.5 lux). The implications of such a cue are discussed in relation to field behaviour.  相似文献   

17.
Movement rhythms in juvenile Atlantic salmon, Salmo salar L.   总被引:1,自引:0,他引:1  
Nocturnal downstrean migration of juvenile Atlantic salmon is usually interpreted as increased locomotor activity. The frequency of downstream passages of 0–1 + salmon in an endless stream channel was greater by night than by day in both smoking and non-smolting fish in autumn and spring. Movement increased at dusk, and decreased after dawn. Mature male 1 + fish moved slightly less than immatures in October, but significantly more in November. Total movement frequency was lower at full moon than at other moon phases, and movement was reduced when the moon was up. Under turbid conditions by day, the threshold water velocity inducing nett downstream movement was 8.2 cm s−1, and the relative velocity of fish swimming downstream was never more than one third that of fish holding station at the normal maximal flow of 25–30 cm s−1.
At the end of their first growing season in October, fish which had been offered food continuously through 24 h did not differ in size from those fed by day only, but the latter were significantly larger than those offered food only at night.
We conclude that: (1) the fish fed actively by day, and not by night; (2) station-holding represented activity, and downstream nocturnal movement represented relative inactivity (displacement) which occurred on loss of visual orientation, hence migration resulted from reduced activity; (3) lack of displacement in early autumn has adaptive value for maturing fish, but not for non-spawners.  相似文献   

18.
Because the increase in metabolic rate related to locomotor activity places demands on the cardiorespiratory apparatus, it is not surprising that the evolution of breathing and of locomotion are coupled. As the respiratory faculty becomes more refined, increasingly aerobic life strategies can be explored, and this activity is in turn expedited by a higher-performance respiratory apparatus. This apparent leapfrogging of respiratory and locomotor faculties begins in noncraniate chordates and continues in water-breathing and air-breathing vertebrates. Because both locomotor and cardiorespiratory activities are coordinated in the brain, neurological as well as biochemical coupling is evident. In spite of very different breathing mechanisms in various vertebrate groups, the basic respiratory control mechanisms appear to have been conserved, and respiratory-locomotor coupling is evident in all classes of vertebrates. Hypaxial body wall muscles that were strictly locomotor in fish have respiratory function in amniotes, but some locomotor function remains in all groups.  相似文献   

19.
To explore a potential conflict between air breathing and acid-base regulation in the bowfin (Amia calva), we examined how individuals with access to air differed from fish without air access in their response to acidosis. After exhaustive exercise, bowfin with access to air recovered significantly more slowly from the acidosis than fish without air access. While arterial blood pH (pH(a)) of fish without air access recovered to resting levels by 8 h, pH(a) was still significantly depressed in fish having access to air. In addition, Pco(2) was slightly more elevated in fish having air access than those without it. Fish with access to air still had a significant metabolic acid load after 8-h recovery, while those without air access completely cleared the load within 4 h. These results suggest that bowfin with access to air were breathing air and, consequently, were less able to excrete CO(2) and H(+) and experienced a delayed recovery. In contrast, during exposure to low pH, air breathing seemed to have a protective effect on acid-base status in bowfin. During exposure to low pH water, bowfin with access to air developed a much milder acidosis than bowfin without air access. The more severe acidosis in fish without air access was caused by an increased rate of lactic acid production. It appears that enhanced O(2) delivery allowed air-breathing bowfin to avoid acidosis-induced anaerobic metabolism and lactic acid production. In addition, during low pH exposure, plasma Na(+) and Cl(-) concentrations of fish without air access fell slightly more rapidly than those in fish with air access, indicating that the branchial ventilatory changes associated with air breathing limited, to some degree, ion losses associated with low pH exposure.  相似文献   

20.
Activity-based anorexia occurs when food availability is restricted to 1 h of the day and a wheel is freely available to the rest of the time. Under such conditions rats run excessively and stop eating even during periods in which food is available. A defining characteristic of the excessive activity is that there is a peak of running in the anticipation of food availability. The present study was designed to test whether the occurrence of the food period at different times of the light phase of the light-dark cycle (from 08:00 to 20:00 h) could impede or postpone the normal development of activity anorexia. We compared the effect of presenting the food at a fixed time of the light period with presenting it on a variable schedule. Far from impeding or postponing the development of activity-based anorexia, presenting food at irregular times resulted in a pronounced body-weight loss, a low food intake and an increase in locomotor activity. Animals ran excessively, with a peak at the start of the dark period, and again when lights were turned on in the experimental room (running in the anticipation of food). Both fixed and variable schedules of food availability resulted in the development of activity-based anorexia in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号