首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in high-throughput sequencing (HTS) have allowed researchers to obtain large amounts of biological sequence information at speeds and costs unimaginable only a decade ago. Phylogenetics, and the study of evolution in general, is quickly migrating towards using HTS to generate larger and more complex molecular datasets. In this paper, we present a method that utilizes microfluidic PCR and HTS to generate large amounts of sequence data suitable for phylogenetic analyses. The approach uses the Fluidigm Access Array System (Fluidigm, San Francisco, CA, USA) and two sets of PCR primers to simultaneously amplify 48 target regions across 48 samples, incorporating sample-specific barcodes and HTS adapters (2,304 unique amplicons per Access Array). The final product is a pooled set of amplicons ready to be sequenced, and thus, there is no need to construct separate, costly genomic libraries for each sample. Further, we present a bioinformatics pipeline to process the raw HTS reads to either generate consensus sequences (with or without ambiguities) for every locus in every sample or—more importantly—recover the separate alleles from heterozygous target regions in each sample. This is important because it adds allelic information that is well suited for coalescent-based phylogenetic analyses that are becoming very common in conservation and evolutionary biology. To test our approach and bioinformatics pipeline, we sequenced 576 samples across 96 target regions belonging to the South American clade of the genus Bartsia L. in the plant family Orobanchaceae. After sequencing cleanup and alignment, the experiment resulted in ~25,300bp across 486 samples for a set of 48 primer pairs targeting the plastome, and ~13,500bp for 363 samples for a set of primers targeting regions in the nuclear genome. Finally, we constructed a combined concatenated matrix from all 96 primer combinations, resulting in a combined aligned length of ~40,500bp for 349 samples.  相似文献   

2.
DNA analysis of predator faeces using high‐throughput amplicon sequencing (HTS) enhances our understanding of predator–prey interactions. However, conclusions drawn from this technique are constrained by biases that occur in multiple steps of the HTS workflow. To better characterize insectivorous animal diets, we used DNA from a diverse set of arthropods to assess PCR biases of commonly used and novel primer pairs for the mitochondrial gene, cytochrome oxidase C subunit 1 (COI). We compared diversity recovered from HTS of bat guano samples using a commonly used primer pair “ZBJ” to results using the novel primer pair “ANML.” To parameterize our bioinformatics pipeline, we created an arthropod mock community consisting of single‐copy (cloned) COI sequences. To examine biases associated with both PCR and HTS, mock community members were combined in equimolar amounts both pre‐ and post‐PCR. We validated our system using guano from bats fed known diets and using composite samples of morphologically identified insects collected in pitfall traps. In PCR tests, the ANML primer pair amplified 58 of 59 arthropod taxa (98%), whereas ZBJ amplified 24–40 of 59 taxa (41%–68%). Furthermore, in an HTS comparison of field‐collected samples, the ANML primers detected nearly fourfold more arthropod taxa than the ZBJ primers. The additional arthropods detected include medically and economically relevant insect groups such as mosquitoes. Results revealed biases at both the PCR and sequencing levels, demonstrating the pitfalls associated with using HTS read numbers as proxies for abundance. The use of an arthropod mock community allowed for improved bioinformatics pipeline parameterization.  相似文献   

3.
High‐throughput sequencing (HTS) of PCR amplicons is becoming the method of choice to sequence one or several targeted loci for phylogenetic and DNA barcoding studies. Although the development of HTS has allowed rapid generation of massive amounts of DNA sequence data, preparing amplicons for HTS remains a rate‐limiting step. For example, HTS platforms require platform‐specific adapter sequences to be present at the 5′ and 3′ end of the DNA fragment to be sequenced. In addition, short multiplex identifier (MID) tags are typically added to allow multiple samples to be pooled in a single HTS run. Existing methods to incorporate HTS adapters and MID tags into PCR amplicons are either inefficient, requiring multiple enzymatic reactions and clean‐up steps, or costly when applied to multiple samples or loci (fusion primers). We describe a method to amplify a target locus and add HTS adapters and MID tags via a linker sequence using a single PCR. We demonstrate our approach by generating reference sequence data for two mitochondrial loci (COI and 16S) for a diverse suite of insect taxa. Our approach provides a flexible, cost‐effective and efficient method to prepare amplicons for HTS.  相似文献   

4.
Microbial community profiling using 16S rRNA gene sequences requires accurate taxonomy assignments. ‘Universal'' primers target conserved sequences and amplify sequences from many taxa, but they provide variable coverage of different environments, and regions of the rRNA gene differ in taxonomic informativeness—especially when high-throughput short-read sequencing technologies (for example, 454 and Illumina) are used. We introduce a new evaluation procedure that provides an improved measure of expected taxonomic precision when classifying environmental sequence reads from a given primer. Applying this measure to thousands of combinations of primers and read lengths, simulating single-ended and paired-end sequencing, reveals that these choices greatly affect taxonomic informativeness. The most informative sequence region may differ by environment, partly due to variable coverage of different environments in reference databases. Using our Rtax method of classifying paired-end reads, we found that paired-end sequencing provides substantial benefit in some environments including human gut, but not in others. Optimal primer choice for short reads totaling 96 nt provides 82–100% of the confident genus classifications available from longer reads.  相似文献   

5.
6.
Metabarcoding of microbial eukaryotes (collectively known as protists) has developed tremendously in the last decade, almost solely relying on the 18S rRNA gene. As microbial eukaryotes are extremely diverse, many primers and primer pairs have been developed. To cover a relevant and representative fraction of the protist community in a given study system, an informed primer choice is necessary, as no primer pair can target all protists equally well. As such, a smart primer choice is very difficult even for experts and there are very few online resources available to list existing primers. We built a database listing 285 primers and 83 unique primer pairs that have been used for eukaryotic 18S rRNA gene metabarcoding. In silico performance of primer pairs was tested against two sequence databases: PR2 version 4.12.0 for eukaryotes and a subset of silva version 132 for bacteria and archaea. We developed an R -based web application enabling browsing of the database, visualization of the taxonomic distribution of the amplified sequences with the number of mismatches, and testing any user-defined primer or primer set ( https://app.pr2-primers.org ). Taxonomic specificity of primer pairs, amplicon size and location of mismatches can also be determined. We identified universal primer sets that matched the largest number of sequences and analysed the specificity of some primer sets designed to target certain groups. This tool enables guided primer choices that will help a wide range of researchers to include protists as part of their investigations.  相似文献   

7.
Different regions of the bacterial 16S rRNA gene evolve at different evolutionary rates. The scientific outcome of short read sequencing studies therefore alters with the gene region sequenced. We wanted to gain insight in the impact of primer choice on the outcome of short read sequencing efforts. All the unknowns associated with sequencing data, i.e. primer coverage rate, phylogeny, OTU-richness and taxonomic assignment, were therefore implemented in one study for ten well established universal primers (338f/r, 518f/r, 799f/r, 926f/r and 1062f/r) targeting dispersed regions of the bacterial 16S rRNA gene. All analyses were performed on nearly full length and in silico generated short read sequence libraries containing 1175 sequences that were carefully chosen as to present a representative substitute of the SILVA SSU database. The 518f and 799r primers, targeting the V4 region of the 16S rRNA gene, were found to be particularly suited for short read sequencing studies, while the primer 1062r, targeting V6, seemed to be least reliable. Our results will assist scientists in considering whether the best option for their study is to select the most informative primer, or the primer that excludes interferences by host-organelle DNA. The methodology followed can be extrapolated to other primers, allowing their evaluation prior to the experiment.  相似文献   

8.
Postglacial migration studies in Quercus rubra L. (northern red oak) are hampered by low levels of population differentiation in the widely used universal chloroplast primers. We sequenced the large single copy (LSC) regions of the Q. rubra and Quercus ellipsoidalis chloroplasts to enable us to query additional regions for future studies on migration and speciation. Using 454 sequencing of long-range PCR amplicons and Sanger sequencing for gap closure, we report 65 coding sequences from Q. rubra and 59 from Q. ellipsoidalis. Comparison of our de novo assembly of the LSC region sequence for Q. rubra to Q. rubra chloroplast sequence (NCBI Reference Sequence: NC_020152.1) from a different tree revealed 106 polymorphisms, all within intergenic regions, that can serve as tools for postglacial migration studies and taxonomic studies within the Lobatae. Sequence alignment for the 59 complete coding regions in common for theQ. rubrachloroplast reference sequence, our Q. rubra sequence and our Q. ellipsoidalis sequence revealed no sequence polymorphisms and no indels. We also report the 52 primer pairs we used for gap closure, including 53 new primer pairs not previously reported. We tested these 52 primer pairs against 11 species representing the Tracheophyta and detected 47 that produced amplicons in all 11 species. The new universal primers we have identified provide additional tools for resolving the taxonomic relationships among the congeneric taxa of forest trees in the temperate and subtropical forests of the Northern Hemisphere.  相似文献   

9.
Porter TM  Golding GB 《PloS one》2012,7(4):e35749
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project na?ve bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50-100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys.  相似文献   

10.
Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle‐scale barcodes. Next‐generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high‐quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long‐range PCR and sequenced using next‐generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early‐diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome‐scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.  相似文献   

11.
Wild crop relatives represent a source of novel alleles for crop genetic improvement. Screening biodiversity for useful or diverse gene homologues has often been based upon the amplification of targeted genes using available sequence information to design primers that amplify the target gene region across species. The crucial requirement of this approach is the presence of sequences with sufficient conservation across species to allow for the design of universal primers. This approach is often not successful with diverse organisms or highly variable genes. Massively parallel sequencing (MPS) can quickly produce large amounts of sequence data and provides a viable option for characterizing homologues of known genes in poorly described genomes. MPS of genomic DNA was used to obtain species‐specific sequence information for 18 rice genes related to domestication characteristics in a wild relative of rice, Microlaena stipoides. Species‐specific primers were available for 16 genes compared with 12 genes using the universal primer method. The use of species‐specific primers had the potential to cover 92% of the sequence of these genes, while traditional universal primers could only be designed to cover 80%. A total of 24 species‐specific primer pairs were used to amplify gene homologues, and 11 primer pairs were successful in capturing six gene homologues. The 23 million, 36‐base pair (bp) paired end reads, equated to an average of 2X genome coverage, facilitated the successful amplification and sequencing of six target gene homologues, illustrating an important approach to the discovery of useful genes in wild crop relatives.  相似文献   

12.
Four fungal 18S rDNA and internal transcribed spacer (ITS) polymerase chain reaction (PCR) primer pairs were tested for their specificity towards target fungal DNA in soil DNA extracts, and their ability to assess the diversity of fungal communities in a natural grassland soil was compared. Amplified PCR products were cloned, and approximately 50 clones from each library were sequenced. Phylogenetic analysis and database searches indicated that each of the sequenced cloned DNA fragments was of fungal origin for each primer pair, with the exception of the sequences generated using the 18S rDNA primers nu-SSU-0817 and nu-SSU-1196, where 35 of the 50 sequenced clones represented soil invertebrates. Although some of the primers have previously been suggested to be biased towards certain fungal taxonomic groups, the ratio of sequences representing each of the four main fungal phyla, Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota, was similar for each of the primer pairs, suggesting that primer bias may be less significant than previously thought. Collector's curves were plotted to estimate the coverage obtained for each of the clone libraries after clustering the sequences into operational taxonomic units at a level of 99% sequence similarity. The curves indicated that good coverage of diversity was achieved, with the exception of the clone library constructed using primers nu-SSU-0817 and nu-SSU-1196, on account of the high number of non-fungal sequences obtained. The work demonstrates the usefulness of 18S rDNA and ITS PCR primers for assessing fungal diversity in environmental samples, and it also highlights some potential limitations of the approach with respect to PCR primer specificity and bias.  相似文献   

13.
High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.  相似文献   

14.
Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T‐RFLP) analysis, are well‐suited techniques for the examination of microbial community structures. The use of phylum‐ and class‐specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain‐specific primers. To date, several phylum‐ and class‐specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non‐target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T‐RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above‐mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.  相似文献   

15.
Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1-V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacter and Enterococcus predominated in the community generated by V4-V6 primers, and the most numerous genera in the V7-V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4-V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7-V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1-V3 and V7-V9 primers provided results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities.  相似文献   

16.
High‐throughput sequencing of environmental DNA (i.e., eDNA metabarcoding) has become an increasingly popular method for monitoring aquatic biodiversity. At present, such analyses require target‐specific primers to amplify DNA barcodes from co‐occurring species, and this initial amplification can introduce biases. Understanding the performance of different primers is thus recommended prior to undertaking any metabarcoding initiative. While multiple software programs are available to evaluate metabarcoding primers, all programs have their own strengths and weaknesses. Therefore, a robust in silico workflow for the evaluation of metabarcoding primers will benefit from the use of multiple programs. Furthermore, geographic differences in species biodiversity are likely to influence the performance of metabarcoding primers and further complicate the evaluation process. Here, an in silico workflow is presented that can be used to evaluate the performance of metabarcoding primers on an ecoregion scale. This workflow was used to evaluate the performance of published and newly developed eDNA metabarcoding primers for the freshwater fish biodiversity of the Murray–Darling Basin (Australia). To validate the in silico workflow, a subset of the primers, including one newly designed primer pair, were used in metabarcoding analyses of an artificial DNA community and eDNA samples. The results show that the in silico workflow allows for a robust evaluation of metabarcoding primers and can reveal important trade‐offs that need to be considered when selecting the most suitable primer. Additionally, a new primer pair was described and validated that allows for more robust taxonomic assignments and is less influenced by primer biases compared to commonly used fish metabarcoding primers.  相似文献   

17.
Assessments of bacterial community diversity and dynamics are fundamental for the understanding of microbial ecology as well as biotechnological applications. We show that the choice of PCR primers has great impact on the results of analyses of diversity and dynamics using gene libraries and DNA fingerprinting. Two universal primer pairs targeting the 16S rRNA gene, 27F&1492R and 63F&M1387R, were compared and evaluated by analyzing the bacterial community in the activated sludge of a large-scale wastewater treatment plant. The two primer pairs targeted distinct parts of the bacterial community, none encompassing the other, both with similar richness. Had only one primer pair been used, very different conclusions had been drawn regarding dominant phylogenetic and putative functional groups. With 27F&1492R, Betaproteobacteria would have been determined to be the dominating taxa while 63F&M1387R would have described Alphaproteobacteria as the most common taxa. Microscopy and fluorescence in situ hybridization analysis showed that both Alphaproteobacteria and Betaproteobacteria were abundant in the activated sludge, confirming that the two primer pairs target two different fractions of the bacterial community. Furthermore, terminal restriction fragment polymorphism analyses of a series of four activated sludge samples showed that the two primer pairs would have resulted in different conclusions about community stability and the factors contributing to changes in community composition. In conclusion, different PCR primer pairs, although considered universal, target different ranges of bacteria and will thus show the diversity and dynamics of different fractions of the bacterial community in the analyzed sample. We also show that while a database search can serve as an indicator of how universal a primer pair is, an experimental assessment is necessary to evaluate the suitability for a specific environmental sample.  相似文献   

18.
Next‐generation sequencing has dramatically changed the landscape of microbial ecology, large‐scale and in‐depth diversity studies being now widely accessible. However, determining the accuracy of taxonomic and quantitative inferences and comparing results obtained with different approaches are complicated by incongruence of experimental and computational data types and also by lack of knowledge of the true ecological diversity. Here we used highly diverse bacterial and archaeal synthetic communities assembled from pure genomic DNAs to compare inferences from metagenomic and SSU rRNA amplicon sequencing. Both Illumina and 454 metagenomic data outperformed amplicon sequencing in quantifying the community composition, but the outcome was dependent on analysis parameters and platform. New approaches in processing and classifying amplicons can reconstruct the taxonomic composition of the community with high reproducibility within primer sets, but all tested primers sets lead to significant taxon‐specific biases. Controlled synthetic communities assembled to broadly mimic the phylogenetic richness in target environments can provide important validation for fine‐tuning experimental and computational parameters used to characterize natural communities.  相似文献   

19.
20.
DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large‐scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (?, ?) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号