首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large‐pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2–3 min per 2‐L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species.  相似文献   

3.
Environmental DNA (eDNA) analysis has successfully detected organisms in various aquatic environments. However, there is little basic information on eDNA, including the eDNA shedding and degradation processes. This study focused on water temperature and fish biomass and showed that eDNA shedding, degradation, and size distribution varied depending on water temperature and fish biomass. The tank experiments consisted of four temperature levels and three fish biomass levels. The total eDNA and size‐fractioned eDNA from Japanese Jack Mackerels (Trachurus japonicus) were quantified before and after removing the fish. The results showed that the eDNA shedding rate increased at higher water temperature and larger fish biomass, and the eDNA decay rate also increased at higher temperature and fish biomass. In addition, the small‐sized eDNA fractions were proportionally larger at higher temperatures, and these proportions varied among fish biomass. After removing the fish from the tanks, the percentage of eDNA temporally decreased when the eDNA size fraction was >10 µm, while the smaller size fractions increased. These results have the potential to make the use of eDNA analysis more widespread in the future.  相似文献   

4.
The advent of environmental DNA (eDNA) analysis methods has enabled rapid and wide‐range ecological monitoring in aquatic ecosystems, but there is a dearth of information on eDNA degradation. The results of previous studies suggest that the decay rate of eDNA varies depending on the length of DNA fragments. To examine this hypothesis, we compared temporal change in copy number of long eDNA fragments (719 bp) with that of short eDNA fragments (127 bp). First, we isolated rearing water from a target fish species, Japanese Jack Mackerel (Trachurus japonicus), and then quantified the copy number of the long and short eDNA fragments in 1 L water samples after isolating the water from the fish. Long DNA fragments showed a higher decay rate than short fragments. Next, we measured the eDNA copy numbers of long and short DNA fragments using field samples, and compared them with fish biomass as measured by echo intensity. Although a previous study suggested that short eDNA fragments could be overestimated because of nontarget eDNA from a nearby fish market and carcasses, the eDNA concentrations of long fragments were correlated with echo intensity. This suggests that the concentration of longer eDNA fragments reflects fish biomass more accurately than the previous study by removing the effects of the fish market and carcasses. The length‐related differences in eDNA have a substantial potential to improve estimation of species biomass.  相似文献   

5.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   

6.
Although the presence/absence of aquatic invertebrates using environmental DNA (eDNA) has been established for several species, inferring population densities has remained problematic. The invasive American signal crayfish, Pacifastacus leniusculus (Dana), is the leading cause of decline in the UK's only native crayfish species, Austropotamobius pallipes (Lereboullet). Methods to detect species at low abundances offer the opportunity for the early detection, and potential eradication, of P. leniusculus before population densities reach threatening levels in areas occupied by A. pallipes. Using a factorial experimental design with aquaria, we investigated the impacts of biomass, sex ratio, and fighting behavior on the amount of eDNA released by P. leniusculus, with the aim to infer density per aquarium depending on treatments. The amount of target eDNA in water samples from each aquarium was measured using the quantitative Polymerase Chain Reaction. We show that the presence of eggs significantly increases the concentration of crayfish eDNA per unit of mass, and that there is a significant relationship between eDNA concentration and biomass when females are egg‐bearing. However, the relationship between crayfish biomass and eDNA concentration is lost in aquaria without ovigerous females. Female‐specific tanks had significantly higher eDNA concentrations than male‐specific tanks, and the prevention of fighting did not impact the amount of eDNA in the water. These results indicate that detection and estimate of crayfish abundance using eDNA may be more effective while females are ovigerous. This information should guide further research for an accurate estimation of crayfish biomass in the field depending on the season. Our results indicate that detection and quantification of egg‐laying aquatic invertebrate species using eDNA could be most successful during periods when eggs are developing in the water. We recommend that practitioners consider the reproductive cycle of target species when attempting to study or detect aquatic species using eDNA in the field.  相似文献   

7.
Few studies have examined capture and extraction methods for environmental DNA (eDNA) to identify techniques optimal for detection and quantification. In this study, precipitation, centrifugation and filtration eDNA capture methods and six commercially available DNA extraction kits were evaluated for their ability to detect and quantify common carp (Cyprinus carpio) mitochondrial DNA using quantitative PCR in a series of laboratory experiments. Filtration methods yielded the most carp eDNA, and a glass fibre (GF) filter performed better than a similar pore size polycarbonate (PC) filter. Smaller pore sized filters had higher regression slopes of biomass to eDNA, indicating that they were potentially more sensitive to changes in biomass. Comparison of DNA extraction kits showed that the MP Biomedicals FastDNA SPIN Kit yielded the most carp eDNA and was the most sensitive for detection purposes, despite minor inhibition. The MoBio PowerSoil DNA Isolation Kit had the lowest coefficient of variation in extraction efficiency between lake and well water and had no detectable inhibition, making it most suitable for comparisons across aquatic environments. Of the methods tested, we recommend using a 1.5 μm GF filter, followed by extraction with the MP Biomedicals FastDNA SPIN Kit for detection. For quantification of eDNA, filtration through a 0.2–0.6 μm pore size PC filter, followed by extraction with MoBio PowerSoil DNA Isolation Kit was optimal. These results are broadly applicable for laboratory studies on carps and potentially other cyprinids. The recommendations can also be used to inform choice of methodology for field studies.  相似文献   

8.
Environmental DNA (eDNA) methods for detecting and estimating abundance of aquatic species are emerging rapidly, but little is known about how processes such as secretion rate, environmental degradation, and time since colonization or extirpation from a given site affect eDNA measurements. Using stream‐dwelling salamanders and quantitative PCR (qPCR) analysis, we conducted three experiments to assess eDNA: (i) production rate; (ii) persistence time under different temperature and light conditions; and (iii) detectability and concentration through time following experimental introduction and removal of salamanders into previously unoccupied streams. We found that 44–50 g individuals held in aquaria produced 77 ng eDNA/h for 2 h, after which production either slowed considerably or began to equilibrate with degradation. eDNA in both full‐sun and shaded treatments degraded exponentially to <1% of the original concentration after 3 days. eDNA was no longer detectable in full‐sun samples after 8 days, whereas eDNA was detected in 20% of shaded samples after 11 days and 100% of refrigerated control samples after 18 days. When translocated into unoccupied streams, salamanders were detectable after 6 h, but only when densities were relatively high (0.2481 individuals/m2) and when samples were collected within 5 m of the animals. Concentrations of eDNA detected were very low and increased steadily from 6–24 h after introduction, reaching 0.0022 ng/L. Within 1 h of removing salamanders from the stream, eDNA was no longer detectable. These results suggest that eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time.  相似文献   

9.
  1. During spawning activity, fish release large amounts of sperm and eggs into the water, which has been assumed to cause an increase in environmental DNA (eDNA) levels and nuclear DNA/mitochondrial DNA ratios. To test whether these assumptions are valid and whether nuclear and mitochondrial eDNA analysis can be used to monitor the spawning activity of freshwater fish, we conducted field eDNA surveys and traditional surveys using common carp (Cyprinus carpio), largemouth bass (Micropterus salmoides) and bluegill sunfish (Lepomis macrochirus) as model species.
  2. Fish spawning periods were estimated based on age, as estimated using the body lengths of juveniles collected in the Miharu reservoir in Fukushima, Japan. The results showed that the main spawning periods of largemouth bass and bluegill sunfish were from April to July and from July to August, respectively.
  3. Field eDNA surveys were conducted in the Hebisawagawa front reservoir, which is connected to the Miharu reservoir. From March to August 2019 and 2020, weekly eDNA sampling was conducted at three sites, and daily sampling was conducted at six sites from 23 June to 3 July 2020. The eDNA concentrations of the nuclear internal transcribed spacer 1 (ITS1) and mitochondrial cytochrome B (CytB), as well as the ITS1/CytB ratio, were measured for each of the three fish in each water sample. Water temperature had a statistically significant effect on eDNA concentration, probably reflecting the relationship between water temperature and spawning.
  4. We created generalised additive mixed models to estimate spawning activity periods based on weekly eDNA data. The estimated periods of spawning activity for common carp, largemouth bass and bluegill sunfish were March to May, May to July, and May to August, respectively. The estimated spawning periods coincided with known fish ecology or the results of traditional methods. This method also has been applied to daily eDNA samples, showing the feasibility of high-resolution estimation of spawning activity.
  5. For common carp and bluegill sunfish, we were able to estimate the spawning period using this method. Although the method is affected by biomass and the diffusion and degradation of eDNA, it has the potential to accurately estimating spawning activities. These then can be estimated without conducting laborious traditional surveys, facilitating the monitoring of reproduction by rare, invasive or important fishery species. Further research on the diffusion distance and degradation time of the eDNA concentration peak caused by fish spawning activity may improve the accuracy of monitoring.
  相似文献   

10.
Recent studies in streams and ponds have demonstrated that the distribution and biomass of aquatic organisms can be estimated by detection and quantification of environmental DNA (eDNA). In more open systems such as seas, it is not evident whether eDNA can represent the distribution and biomass of aquatic organisms because various environmental factors (e.g., water flow) are expected to affect eDNA distribution and concentration. To test the relationships between the distribution of fish and eDNA, we conducted a grid survey in Maizuru Bay, Sea of Japan, and sampled surface and bottom waters while monitoring biomass of the Japanese jack mackerel (Trachurus japonicus) using echo sounder technology. A linear model showed a high R2 value (0.665) without outlier data points, and the association between estimated eDNA concentrations from the surface water samples and echo intensity was significantly positive, suggesting that the estimated spatial variation in eDNA concentration can reflect the local biomass of the jack mackerel. We also found that a best-fit model included echo intensity obtained within 10–150 m from water sampling sites, indicating that the estimated eDNA concentration most likely reflects fish biomass within 150 m in the bay. Although eDNA from a wholesale fish market partially affected eDNA concentration, we conclude that eDNA generally provides a ‘snapshot’ of fish distribution and biomass in a large area. Further studies in which dynamics of eDNA under field conditions (e.g., patterns of release, degradation, and diffusion of eDNA) are taken into account will provide a better estimate of fish distribution and biomass based on eDNA.  相似文献   

11.
Environmental DNA (eDNA) is a promising tool for rapid and noninvasive biodiversity monitoring. eDNA density is low in environmental samples, and a capture method, such as filtration, is often required to concentrate eDNA for downstream analyses. In this study, six treatments, with differing filter types and pore sizes for eDNA capture, were compared for their efficiency and accuracy to assess fish community structure with known fish abundance and biomass via eDNA metabarcoding. Our results showed that different filters (with the exception of 20‐μm large‐pore filters) were broadly consistent in their DNA capture ability. The 0.45‐μm filters performed the best in terms of total DNA yield, probability of species detection, repeatability within pond and consistency between ponds. However performance of 0.45‐μm filters was only marginally better than for 0.8‐μm filters, while filtration time was significantly longer. Given this trade‐off, the 0.8‐μm filter is the optimal pore size of membrane filter for turbid, eutrophic and high fish density ponds analysed here. The 0.45‐μm Sterivex enclosed filters performed reasonably well and are suitable in situations where on‐site filtration is required. Finally, prefilters are applied only if absolutely essential for reducing the filtration time or increasing the throughput volume of the capture filters. In summary, we found encouraging similarity in the results obtained from different filtration methods, but the optimal pore size of filter or filter type might strongly depend on the water type under study.  相似文献   

12.
Relatively little is known about the distribution of fish in deep water (>200 m) in the Beaufort Sea. Data collected by an Acoustic Doppler Current Profiler operated in the Chukchi and Beaufort seas in summer were examined for evidence of fish biomass detections between 18 and 400 m. The presence of fish in waters between 1 and 30 m was explored opportunistically with a non-scientific echo sounder. Evaluation of findings was enhanced by measurements of water column properties (temperature, salinity, fluorescence and transmissivity). Relatively small shoals of fish were detected on the Chukchi shelf and eastern Chukchi shelf break, and also on the Alaskan and Canadian Beaufort shelves in the upper 20 m (T = 2–5°C). Much larger shoals (putative polar cod) were detected within Atlantic Water along the Beaufort continental slope (250–350 m) and near the bottom of Barrow and Mackenzie canyons, where temperatures were above 0°C. A warm-water plume of Alaska Coastal Current water with high concentrations of phytoplankton, zooplankton, and fish was found extending along the shelf 300 km eastward of Barrow Canyon. In contrast to the warm surface and Atlantic Water layers, very few fish were found in colder, intermediate depth Pacific-origin water between them. The large biomass of fish in the Atlantic Water along the continental slope of the Chukchi and Beaufort seas represents previously undescribed polar cod habitat. It has important implications with regard to considerations of resource development in this area as well as understanding impacts of climate change.  相似文献   

13.
Recent studies have demonstrated that detection of environmental DNA (eDNA) from aquatic vertebrates in water bodies is possible. The Burmese python, Python bivittatus, is a semi‐aquatic, invasive species in Florida where its elusive nature and cryptic coloration make its detection difficult. Our goal was to develop a diagnostic PCR to detect P. bivittatus from water‐borne eDNA, which could assist managers in monitoring this invasive species. First, we used captive P. bivittatus to determine whether reptilian DNA could be isolated and amplified from water samples. We also evaluated the efficacy of two DNA isolation methods and two DNA extraction kits commonly used in eDNA preparation. A fragment of the mitochondrial cytochrome b gene from P. bivittatus was detected in all water samples isolated with the sodium acetate precipitate and the QIAamp DNA Micro Kit. Next, we designed P. bivittatus‐specific primers and assessed the degradation rate of eDNA in water. Our primers did not amplify DNA from closely related species, and we found that P. bivittatus DNA was consistently detectable up to 96 h. Finally, we sampled water from six field sites in south Florida. Samples from five sites, where P. bivittatus has been observed, tested positive for eDNA. The final site was negative and had no prior documented evidence of P. bivittatus. This study shows P. bivittatus eDNA can be isolated from water samples; thus, this method is a new and promising technique for the management of invasive reptiles.  相似文献   

14.
Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine‐scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild‐caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small‐bodied wild terrestrial salamander populations.  相似文献   

15.
16.
17.
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2‐week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction.  相似文献   

18.
The effectiveness and accuracy of detection using environmental DNA (eDNA) is dependent on understanding the influence laboratory methods such as DNA extraction and PCR strategies have on detection probability. Ideally choice of sampling and extraction method will maximize eDNA yield and detection probability. Determining the survey effort required to reach a satisfactory detection probability (via increased PCR replicates or more sampling) could compensate for a lower eDNA yield if the sampling and extraction method has other advantages for a study, species or system. I analysed the effect of three different sampling and extraction methods on eDNA yield, detection probability and PCR replication for detecting the endangered freshwater fish Macquaria australasica from water samples. The impact of eDNA concentration, PCR strategy, target amplicon size and two marker regions: 12S (a mitochondrial gene) and 18S (a nuclear gene) was also assessed. The choice of sampling and extraction method and PCR strategy, rather than amplicon size and marker region, had the biggest effect on detection probability and PCR replication. The PCR replication effort required to achieve a detection probability of 0.95, ranged from 2 to 6 PCR replicates depending on the laboratory method used. As all methods yielded eDNA from which M. australasica was detected using the three target amplicons, differences in eDNA yield and detection probability between the three methods could be mitigated by determining the appropriate PCR replication effort. Evaluating the effect sampling and extraction methods will have on the detection probability and determining the laboratory protocols and PCR replication required to maximize detection and minimize false positives and negatives is a useful first step for eDNA occupancy studies.  相似文献   

19.
The sensitivity and specificity of eDNA-based monitoring, coupled with its potential utility to estimate population density or biomass, makes it a useful tool in invasive species management. In this study, we investigated the potential of the eDNA method to improve the detection of the elusive invasive fish, oriental weatherloach (Misgurnus anguillicaudatus), in a river system where a density gradient of the species occurs. We compared detection rates between eDNA and conventional monitoring methods and examined the relationship between eDNA and abundance in a flowing environment. The eDNA method had a higher site detection rate than conventional methods (63 vs. 38%). Weatherloach eDNA was detected at all sites where the fish has been previously caught and none of the sites where the species has not been caught for the past 7 years. There was an increasing density trend going downstream based on long-term conventional monitoring, but the eDNA concentration in water samples reflected this trend only in a continuous section of the river where impoundments were absent. We did not find a positive relationship between eDNA concentration and contemporary abundance estimates in our study area. A high eDNA concentration was recorded at a site (DVC) which was designated a low density site based on long-term catch data. This discrepancy was a likely result of physical habitat characteristics which influenced the efficiency of the conventional methods used. This study highlighted the challenges of inferring density from eDNA data in flowing water because habitat features may confound results, necessitating careful consideration for results to be useful to management.  相似文献   

20.
Although environmental DNA (eDNA) has been used to infer the presence of rare aquatic species, many facets of this technique remain unresolved. In particular, the relationship between eDNA and fish distribution is not known. We examined the relationship between the distribution of fish and their eDNA (detection rate and concentration) in a lake. A quantitative PCR (qPCR) assay for a region within the cytochrome b gene of the common carp (Cyprinus carpio or ‘carp’), an ubiquitous invasive fish, was developed and used to measure eDNA in Lake Staring (MN, USA), in which both the density of carp and their distribution have been closely monitored for several years. Surface water, sub-surface water, and sediment were sampled from 22 locations in the lake, including areas frequently used by carp. In water, areas of high carp use had a higher rate of detection and concentration of eDNA, but there was no effect of fish use on sediment eDNA. The detection rate and concentration of eDNA in surface and sub-surface water were not significantly different (p≥0.5), indicating that eDNA did not accumulate in surface water. The detection rate followed the trend: high-use water > low-use water > sediment. The concentration of eDNA in sediment samples that were above the limit of detection were several orders of magnitude greater than water on a per mass basis, but a poor limit of detection led to low detection rates. The patchy distribution of eDNA in the water of our study lake suggests that the mechanisms that remove eDNA from the water column, such as decay and sedimentation, are rapid. Taken together, these results indicate that effective eDNA sampling methods should be informed by fish distribution, as eDNA concentration was shown to vary dramatically between samples taken less than 100 m apart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号