首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
megasat is software that enables genotyping of microsatellite loci using next‐generation sequencing data. Microsatellites are amplified in large multiplexes, and then sequenced in pooled amplicons. megasat reads sequence files and automatically scores microsatellite genotypes. It uses fuzzy matches to allow for sequencing errors and applies decision rules to account for amplification artefacts, including nontarget amplification products, replication slippage during PCR (amplification stutter) and differential amplification of alleles. An important feature of megasat is the generation of histograms of the length–frequency distributions of amplification products for each locus and each individual. These histograms, analogous to electropherograms traditionally used to score microsatellite genotypes, enable rapid evaluation and editing of automatically scored genotypes. megasat is written in Perl, runs on Windows, Mac OS X and Linux systems, and includes a simple graphical user interface. We demonstrate megasat using data from guppy, Poecilia reticulata. We genotype 1024 guppies at 43 microsatellites per run on an Illumina MiSeq sequencer. We evaluated the accuracy of automatically called genotypes using two methods, based on pedigree and repeat genotyping data, and obtained estimates of mean genotyping error rates of 0.021 and 0.012. In both estimates, three loci accounted for a disproportionate fraction of genotyping errors; conversely, 26 loci were scored with 0–1 detected error (error rate ≤0.007). Our results show that with appropriate selection of loci, automated genotyping of microsatellite loci can be achieved with very high throughput, low genotyping error and very low genotyping costs.  相似文献   

2.
High‐throughput sequencing has been proposed as a method to genotype microsatellites and overcome the four main technical drawbacks of capillary electrophoresis: amplification artifacts, imprecise sizing, length homoplasy, and limited multiplex capability. The objective of this project was to test a high‐throughput amplicon sequencing approach to fragment analysis of short tandem repeats and characterize its advantages and disadvantages against traditional capillary electrophoresis. We amplified and sequenced 12 muskrat microsatellite loci from 180 muskrat specimens and analyzed the sequencing data for precision of allele calling, propensity for amplification or sequencing artifacts, and for evidence of length homoplasy. Of the 294 total alleles, we detected by sequencing, only 164 alleles would have been detected by capillary electrophoresis as the remaining 130 alleles (44%) would have been hidden by length homoplasy. The ability to detect a greater number of unique alleles resulted in the ability to resolve greater population genetic structure. The primary advantages of fragment analysis by sequencing are the ability to precisely size fragments, resolve length homoplasy, multiplex many individuals and many loci into a single high‐throughput run, and compare data across projects and across laboratories (present and future) with minimal technical calibration. A significant disadvantage of fragment analysis by sequencing is that the method is only practical and cost‐effective when performed on batches of several hundred samples with multiple loci. Future work is needed to optimize throughput while minimizing costs and to update existing microsatellite allele calling and analysis programs to accommodate sequence‐aware microsatellite data.  相似文献   

3.
Using high throughput sequencing we obtained a large number of microsatellites from Podocnemis lewyana, an endemic turtle from northwestern South America. We used 454 Genome Sequence FLX platform of sheared genomic DNA from randomly sampling approximately 17% of the haploid genome. We identified 86,501 reads (8.1% of all reads) that contained our definition of microsatellite loci. AC and TC were the most abundant motifs in the P. lewyana genome. TGC and AAAC were most abundant tri and tetra-nucleotide motifs respectively. 72.7% of microsatellite reads had flanking sequence regions suitable for primer design and PCR amplification. We validated the identified potentially amplifiable loci (PAL) and tested for polymorphism by selecting 15 loci corresponding to tetranucleotides. Twelve loci showed polymorphism in eight individuals. These findings demonstrates that microsatellite detection using next-generation sequencing is an efficient way of getting a lot of loci for listed taxa and in turn will have a large impact on future genetic studies aiming to understand and implement conservation plans for this highly threatened freshwater turtle.  相似文献   

4.
Streamlining the development and genotyping of microsatellites in species for which no genetic information is available represents an important technical challenge to overcome in order to enable mainstream application of state-of-the-art population genetic analysis techniques in nonmodel organisms. Using the example of Acacia harpophylla, an acacia tree endemic of north-eastern Australia, we show that high-throughput shotgun pyrosequencing technology, so-called second-generation sequencing, reduces time and cost of microsatellite marker discovery in nonmodel organisms and of their large-scale typing in natural populations. We found that 0.5% of short sequence reads generated on 454 Genome Sequencer FLX Titanium from random genome sampling and 2.2% of reads generated with prior microsatellite enrichment yielded microsatellite markers with designed polymerase chain reaction (PCR) primers, suggesting that enrichment increases efficiency of pyrosequencing when microsatellite discovery is the primary goal. Using stringent selection criteria to facilitate downstream PCR multiplex design, we identified 1435 microsatellite loci with designed primers from a total of 200,908 short sequence reads. From a subset of 96 loci tested for amplification, 38 were validated for population genetics applications, leading to the optimization of a cost-effective multiplex PCR protocol for the simultaneous typing of nine microsatellites in natural populations of A. harpophylla.  相似文献   

5.
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.  相似文献   

6.
Despite recent advances in high‐throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club‐legged grasshopper (Gomphocerus sibiricus), an emerging quantitative genetic and behavioral model system. Whole genome shotgun Illumina MiSeq sequencing was used to generate over three million 300 bp paired‐end reads, of which 67.75% were grouped into 40,548 clusters within RepeatExplorer. Annotations of the top 468 clusters, which represent 60.5% of the reads, revealed homology to satellite DNA and a variety of transposable elements. Evaluating 96 primer pairs in eight wild‐caught individuals, we found that primers mined from singleton reads were six times more likely to amplify a single polymorphic microsatellite locus than primers mined from clusters. Our study provides experimental evidence in support of the notion that microsatellites associated with repetitive elements are less likely to successfully amplify. It also reveals how advances in high‐throughput sequencing and graph‐based repetitive DNA analysis can be leveraged to isolate polymorphic microsatellites from complex genomes.  相似文献   

7.
Thirty-three androgenetic progeny groups of common carp were analysed using 11 microsatellite markers to (i) verify the homozygous status of the 566 androgenetic individuals, (ii) analyse the microsatellite allele segregation, and (iii) study the possible association of microsatellite alleles with phenotypic traits. In total, 92% of the androgenetic individuals proved to be homozygous at all 11 loci. Forty-three of the 47 heterozygous individuals were heterozygous at a single locus only. This heterozygosity was probably due to DNA fragments caused by UV irradiation of the eggs. although the maternal origin of the fragments could not be proved beyond doubt. Screening with 11 microsatellites also revealed two linkage groups, a segregation distortion at two microsatellite loci, and the possible association of some microsatellites with mass, length, stress-related plasma cortisol levels, and basal plasma glucose levels. The success of the linkage and association study could be explained by a low recombination frequency due to high chiasma interference. This would imply a relatively short genetic map for common carp.  相似文献   

8.
9.
Short tandem repeats (STRs), also known as microsatellites, are commonly used to noninvasively genotype wild‐living endangered species, including African apes. Until recently, capillary electrophoresis has been the method of choice to determine the length of polymorphic STR loci. However, this technique is labor intensive, difficult to compare across platforms, and notoriously imprecise. Here we developed a MiSeq‐based approach and tested its performance using previously genotyped fecal samples from long‐term studied chimpanzees in Gombe National Park, Tanzania. Using data from eight microsatellite loci as a reference, we designed a bioinformatics platform that converts raw MiSeq reads into locus‐specific files and automatically calls alleles after filtering stutter sequences and other PCR artifacts. Applying this method to the entire Gombe population, we confirmed previously reported genotypes, but also identified 31 new alleles that had been missed due to sequence differences and size homoplasy. The new genotypes, which increased the allelic diversity and heterozygosity in Gombe by 61% and 8%, respectively, were validated by replicate amplification and pedigree analyses. This demonstrated inheritance and resolved one case of an ambiguous paternity. Using both singleplex and multiplex locus amplification, we also genotyped fecal samples from chimpanzees in the Greater Mahale Ecosystem in Tanzania, demonstrating the utility of the MiSeq‐based approach for genotyping nonhabituated populations and performing comparative analyses across field sites. The new automated high‐throughput analysis platform (available at https://github.com/ShawHahnLab/chiimp ) will allow biologists to more accurately and effectively determine wildlife population size and structure, and thus obtain information critical for conservation efforts.  相似文献   

10.
The Yangtze sturgeon (Acipenser dabryanus) is an endemic species in China. Using 454 sequencing, eight polymorphic tri‐, tetra‐, penta‐, and hexanucleotide microsatellite loci were isolated in this study. The raw sequence data from a one‐eighth run of 454 sequencings were 38.0 Mbp containing 94 222 reads/sequences. Of 80 microsatellite loci, only eight loci were polymorphic in a population of 30 individuals. The number of alleles per locus ranged from 4 to 14 (mean 7.62), and the observed heterozygosities varied between 0.46 and 0.88 (mean 0.74). Cross amplification was tested in congeneric species Acipenser sturio and Acipenser sinensis. These new microsatellite markers will be useful for further studies on genetic variation, parentage analysis, and conservation management for this critically endangered species.  相似文献   

11.
Whole‐genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians, resulting in a pervasiveness of paralogous loci and the potential for both disomic and tetrasomic inheritance in the same genome. Paralogs can be difficult to reliably genotype and are often excluded from genotyping‐by‐sequencing (GBS) analyses; however, removal requires paralogs to be identified which is difficult without a reference genome. We present a method for identifying paralogs in natural populations by combining two properties of duplicated loci: (i) the expected frequency of heterozygotes exceeds that for singleton loci, and (ii) within heterozygotes, observed read ratios for each allele in GBS data will deviate from the 1:1 expected for singleton (diploid) loci. These deviations are often not apparent within individuals, particularly when sequence coverage is low; but, we postulated that summing allele reads for each locus over all heterozygous individuals in a population would provide sufficient power to detect deviations at those loci. We identified paralogous loci in three species: Chinook salmon (Oncorhynchus tshawytscha) which retains regions with ongoing residual tetrasomy on eight chromosome arms following a recent whole‐genome duplication, mountain barberry (Berberis alpina) which has a large proportion of paralogs that arose through an unknown mechanism, and dusky parrotfish (Scarus niger) which has largely rediploidized following an ancient whole‐genome duplication. Importantly, this approach only requires the genotype and allele‐specific read counts for each individual, information which is readily obtained from most GBS analysis pipelines.  相似文献   

12.
We cloned seven microsatellite loci from house wrens (Troglodytes aedon) using a biotin enrichment protocol. Starting with fragments generated using DOP–PCR, fragments containing microsatellite motifs AC and AAC were captured using biotinylated probes and streptavidin coated magnetic particles. Captured fragments were cloned into plasmids; prior to sequencing, the plasmids were screened for microsatellites using a simple PCR approach. Five of the loci showed variation in a sample of nine individuals.  相似文献   

13.
Using an enriched genomic library, we developed seven (CT)n/(GA)n microsatellite loci for eelgrass Zostera marina L. Enrichment is described and highly recommended for genomes in which microsatellites are rare, such as in many plants. A test for polymorphism was performed on individuals from three geographically separated populations (N = 15/population) and revealed considerable genetic variation. The number of alleles per locus varied between five and 11 and the observed heterozygosities for single loci ranged from 0.16 to 0.81 within populations. Mean allele lengths were markedly different among populations, indicating that the identified loci will be useful in studying population structure in Z. marina. As the frequency of the most abundant multilocus genotype within populations was always < 1%, these loci have sufficient resolving power to address clone size in predominantly vegetatively reproducing populations.  相似文献   

14.
? Premise of the study: New microsatellite primers were developed for testing genetic differentiation within Nothoceros aenigmaticus and their potential use in other Nothoceros species. The microsatellites are designed to investigate partitioning of genetic variation in a taxon with a peculiar sex allopatry in the southern Appalachian Mountains and relationships with conspecific sexual populations from Mexico. ? Methods and Results: We used two methods for microsatellite development: an enriched library and second-generation shotgun sequence reads. From these two methods, a total of nine primer pairs were selected and tested on 89 southern Appalachian N. aenigmaticus accessions, nine Mexican accessions, and 16 N. vincentianus accessions. Three mitochondrial loci were recovered from the enriched library method and six loci from 454 shotgun sequencing: three were from the chloroplast and three from the nucleus. The primers amplified repeats with two to 20 alleles per locus. ? Conclusions: New microsatellite primers were developed for testing genetic differentiation within N. aenigmaticus and potentially for use in other Nothoceros species. We present one of the first reports of highly polymorphic mitochondrial microsatellites in plants.  相似文献   

15.
Next generation sequencing is revolutionizing molecular ecology by simplifying the development of molecular genetic markers, including microsatellites. Here, we summarize the results of the large-scale development of microsatellites for 54 nonmodel species using next generation sequencing and show that there are clear differences amongst plants, invertebrates and vertebrates for the number and proportion of motif types recovered that are able to be utilized as markers. We highlight that the heterogeneity within each group is very large. Despite this variation, we provide an indication of what number of sequences and consequent proportion of a 454 run are required for the development of 40 designable, unique microsatellite loci for a typical molecular ecological study. Finally, to address the challenges of choosing loci from the vast array of microsatellite loci typically available from partial genome runs (average for this study, 2341 loci), we provide a microsatellite development flowchart as a procedural guide for application once the results of a partial genome run are obtained.  相似文献   

16.
Optimal integration of next-generation sequencing into mainstream research requires re-evaluation of how problems can be reasonably overcome and what questions can be asked. One potential application is the rapid acquisition of genomic information to identify microsatellite loci for evolutionary, population genetic and chromosome linkage mapping research on non-model and not previously sequenced organisms. Here, we report on results using high-throughput sequencing to obtain a large number of microsatellite loci from the venomous snake Agkistrodon contortrix, the copperhead. We used the 454 Genome Sequencer FLX next-generation sequencing platform to sample randomly ∼27 Mbp (128 773 reads) of the copperhead genome, thus sampling about 2% of the genome of this species. We identified microsatellite loci in 11.3% of all reads obtained, with 14 612 microsatellite loci identified in total, 4564 of which had flanking sequences suitable for polymerase chain reaction primer design. The random sequencing-based approach to identify microsatellites was rapid, cost-effective and identified thousands of useful microsatellite loci in a previously unstudied species.  相似文献   

17.
The advent of next‐generation sequencing (NGS) technologies has transformed the way microsatellites are isolated for ecological and evolutionary investigations. Recent attempts to employ NGS for microsatellite discovery have used the 454, Illumina, and Ion Torrent platforms, but other methods including single‐molecule real‐time DNA sequencing (Pacific Biosciences or PacBio) remain viable alternatives. We outline a workflow from sequence quality control to microsatellite marker validation in three plant species using PacBio circular consensus sequencing (CCS). We then evaluate the performance of PacBio CCS in comparison with other NGS platforms for microsatellite isolation, through simulations that focus on variations in read length, read quantity and sequencing error rate. Although quality control of CCS reads reduced microsatellite yield by around 50%, hundreds of microsatellite loci that are expected to have improved conversion efficiency to functional markers were retrieved for each species. The simulations quantitatively validate the advantages of long reads and emphasize the detrimental effects of sequencing errors on NGS‐enabled microsatellite development. In view of the continuing improvement in read length on NGS platforms, sequence quality and the corresponding strategies of quality control will become the primary factors to consider for effective microsatellite isolation. Among current options, PacBio CCS may be optimal for rapid, small‐scale microsatellite development due to its flexibility in scaling sequencing effort, while platforms such as Illumina MiSeq will provide cost‐efficient solutions for multispecies microsatellite projects.  相似文献   

18.
Despite their numerous advantages, the use of microsatellites as genetic markers could be limited because of the low number of loci that can be simultaneously analysed per experiment. To increase the information per simple sequence repeat (SSR) assay in the grapevine, we developed a large set of new markers suitable for multiplexing and multi-loading. We produced microsatellite motif-enriched genomic libraries containing preferentially large size inserts which allowed us to design primers generating a wide range of allele sizes in a very standard and unique PCR condition. Three hundred and fifty clones were sequenced and 190 of them (54%) contained microsatellite motifs with suitable flanking regions for primer design. We developed 169 new SSR markers giving suitable signal with fluorescent-based DNA detection. The total number of alleles detected varied from 1 to 8 per locus with an average of 3.5 and the mean expected heterozygosity was 0.544 (range: 0 0.86). Sixty-eight loci (40%) were perfect types, 73 (43%) were imperfect and 28 (17%) were compound or imperfect-compound. The number of alleles generated by perfect and imperfect type loci was positively correlated to the length of the microsatellite motif. Forty-six multiplex sets based on 125 selected loci were developed. Considering their allele size range, up to four PCR multiplex were pooled together for multi-loading. The 169 SSR loci developed in this study represent a new and informative set of markers easy to combine for multiplexing and multi-loading according to the needs of any user and suitable for large scale genetic analyses in grapevine.  相似文献   

19.
This investigation evaluates the usage of genetic markers, microsatellites, to distinguish and re-identify individual plants in a population of the orchid Gymnadenia conopsea. The study also illustrates the problem in estimating the size of a population from single year sampling as individuals can rest underground or occur in vegetative states; information extremely important for the understanding of population dynamics as well as providing information for conservation management. The total population size was, based on information from microsatellite loci, estimated to 84 individuals and vastly larger than the annual number of flowering plants (mean 31.4 individuals/year). Flowering frequency varied from 24–49%, 53 individuals flowered once, five individuals were flowering four years and a single individual was flowering five years. A common pattern was one or two flowering periods followed by a non-flowering period. The observed number of alleles and the observed and expected heterozygosity varied among loci, although allele frequencies and genotype frequencies did not vary significantly among years.  相似文献   

20.
研究利用5个高度多态性的微卫星标记,对500个企鹅珍珠贝(Pteria penguin)的4个生长性状进行了关联分析。结果显示, QEB-D15和CL-232两个微卫星标记与企鹅珍珠贝的壳宽呈极显著相关(P<0.01);位点QEBD15基因型是239/263的个体壳宽为最大值,基因型是239/273的个体壳宽为最小值,推测263 bp等位基因与壳宽之间存在正相关关系,而273 bp等位基因与壳宽之间存在负相关关系;位点CL-232基因型为157/174的个体壳长、壳宽、总重的均值较同一位点的其他基因型均为最大值,该基因型推测为优势基因型;而基因型为177/192的个体壳长、壳宽、壳高和总重的均值较同一位点的其他基因型均为最小值,推测该基因型为劣势基因型,上述结果可为企鹅珍珠贝分子标记辅助选择育种提供理论依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号