首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Why is there such a large variation in size and noncoding DNA content among organelle genomes? One explanation is that this genomic variation results from differences in the rates of organelle mutation and random genetic drift, as opposed to being the direct product of natural selection. Along these lines, the mutational hazard hypothesis (MHH) holds that ‘excess’ DNA is a mutational liability (because it increases the potential for harmful mutations) and, thus, has a greater tendency to accumulate in an organelle system with a low mutation rate as opposed to one with a high rate of mutation. Various studies have explored this hypothesis and, more generally, the relationship between organelle genome architecture and the mode and efficiency of organelle DNA repair. Although some of these investigations are in agreement with the MHH, others have contradicted it; nevertheless, they support a central role of mutation, DNA maintenance pathways and random genetic drift in fashioning organelle chromosomes. Arguably, one of the most important contributions of the MHH is that it has sparked crucial, widespread discussions about the importance of nonadaptive processes in genome evolution.  相似文献   

2.
Recent advances in high‐thoughput DNA sequencing have made genome‐scale analyses of genomes of extinct organisms possible. With these new opportunities come new difficulties in assessing the authenticity of the DNA sequences retrieved. We discuss how these difficulties can be addressed, particularly with regard to analyses of the Neandertal genome. We argue that only direct assays of DNA sequence positions in which Neandertals differ from all contemporary humans can serve as a reliable means to estimate human contamination. Indirect measures, such as the extent of DNA fragmentation, nucleotide misincorporations, or comparison of derived allele frequencies in different fragment size classes, are unreliable. Fortunately, interim approaches based on mtDNA differences between Neandertals and current humans, detection of male contamination through Y chromosomal sequences, and repeated sequencing from the same fossil to detect autosomal contamination allow initial large‐scale sequencing of Neandertal genomes. This will result in the discovery of fixed differences in the nuclear genome between Neandertals and current humans that can serve as future direct assays for contamination. For analyses of other fossil hominins, which may become possible in the future, we suggest a similar ‘boot‐strap’ approach in which interim approaches are applied until sufficient data for more definitive direct assays are acquired.  相似文献   

3.
Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle‐scale barcodes. Next‐generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high‐quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long‐range PCR and sequenced using next‐generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early‐diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome‐scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.  相似文献   

4.
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high‐throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping‐by‐sequencing (GBS) methods include over a dozen reduced‐representation sequencing (RRS) approaches and at least four whole‐genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best‐suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker‐assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small‐ to moderate‐sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost‐effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost‐effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.  相似文献   

5.
Population genetic studies in nonmodel organisms are often hampered by a lack of reference genomes that are essential for whole‐genome resequencing. In the light of this, genotyping methods have been developed to effectively eliminate the need for a reference genome, such as genotyping by sequencing or restriction site‐associated DNA sequencing (RAD‐seq). However, what remains relatively poorly studied is how accurately these methods capture both average and variation in genetic diversity across an organism's genome. In this issue of Molecular Ecology Resources, Dutoit et al. (2016) use whole‐genome resequencing data from the collard flycatcher to assess what factors drive heterogeneity in nucleotide diversity across the genome. Using these data, they then simulate how well different sequencing designs, including RAD sequencing, could capture most of the variation in genetic diversity. They conclude that for evolutionary and conservation‐related studies focused on the estimating genomic diversity, researchers should emphasize the number of loci analysed over the number of individuals sequenced.  相似文献   

6.
594 fish genomes have been sequenced in past two decades, this represents 1.85% of the total reported fish species (32,000). Despite this no study represents the trends and only some studies have delved into how the genome size (GS) of the genomes are shaped by species taxonomy. However, all these studies have used data obtained by traditional cytometric methods and also have largely disregarded other genome attributes namely GC, number of chromosomes (CR), number of genes (GE), and protein count (PC). The present study used the most current data on genome attributes of fishes as generated by the whole genome sequencing projects to understand the trends, effect of taxonomy on the genome attributes (GS, GC, CR, GE, and PC) and the interrelation of genome attributes. The trends states that maximum number of fish genomes were sequenced in year 2020, order Cichliformes represents the highest number of published genomes, Illumina is the most used technology for sequencing fish genomes, etc. Our analyses exhibit some concrete trends for fishes as a whole and indicated a strong selection for smaller genomes among all vertebrates and a strong effect of taxonomy on all genome attributes. It also provides clear insights that the fish GS is significantly different from birds, amphibians, reptiles, mammals and insects while the GC only varied from insects. An inverse relation was observed between the GS and GC, and a direct relation was observed between the GS and CR, GE and PC. The results also signify that the per MB value of all the genome attributes decline with increasing GS.  相似文献   

7.
With the expansion of next‐generation sequencing technology and advanced bioinformatics, there has been a rapid growth of genome sequencing projects. However, while this technology enables the rapid and cost‐effective assembly of draft genomes, the quality of these assemblies usually falls short of gold standard genome assemblies produced using the more traditional BAC by BAC and Sanger sequencing approaches. Assembly validation is often performed by the physical anchoring of genetically mapped markers, but this is prone to errors and the resolution is usually low, especially towards centromeric regions where recombination is limited. New approaches are required to validate reference genome assemblies. The ability to isolate individual chromosomes combined with next‐generation sequencing permits the validation of genome assemblies at the chromosome level. We demonstrate this approach by the assessment of the recently published chickpea kabuli and desi genomes. While previous genetic analysis suggests that these genomes should be very similar, a comparison of their chromosome sizes and published assemblies highlights significant differences. Our chromosomal genomics analysis highlights short defined regions that appear to have been misassembled in the kabuli genome and identifies large‐scale misassembly in the draft desi genome. The integration of chromosomal genomics tools within genome sequencing projects has the potential to significantly improve the construction and validation of genome assemblies. The approach could be applied both for new genome assemblies as well as published assemblies, and complements currently applied genome assembly strategies.  相似文献   

8.
With the decreasing cost and availability of many newly developed bioinformatics pipelines, next-generation sequencing (NGS) has revolutionized plant systematics in recent years. Genome skimming has been widely used to obtain high-copy fractions of the genomes, including plastomes, mitochondrial DNA (mtDNA), and nuclear ribosomal DNA (nrDNA). In this study, through simulations, we evaluated the optimal (minimum) sequencing depth and performance for recovering single-copy nuclear genes (SCNs) from genome skimming data, by subsampling genome resequencing data and generating 10 data sets with different sequencing coverage in silico. We tested the performance of four data sets (plastome, nrDNA, mtDNA, and SCNs) obtained from genome skimming based on phylogenetic analyses of the Vitis clade at the genus level and Vitaceae at the family level, respectively. Our results showed that optimal minimum sequencing depth for high-quality SCNs assembly via genome skimming was about 10× coverage. Without the steps of synthesizing baits and enrichment experiments, coupled with incredibly low sequencing costs, we showcase that deep genome skimming (DGS) is as effective for capturing large data sets of SCNs as the widely used Hyb-Seq approach, in addition to capturing plastomes, mtDNA, and entire nrDNA repeats. DGS may serve as an efficient and economical alternative and may be superior to the popular target enrichment/Hyb-Seq approach.  相似文献   

9.
How variation in the genome translates into biological diversity and new species originate has endured as the mystery of mysteries in evolutionary biology. African cichlid fishes are prime model systems to address speciation‐related questions for their remarkable taxonomic and phenotypic diversity, and the possible role of gene flow in this process. Here, we capitalize on genome sequencing and phylogenomic analyses to address the relative impacts of incomplete lineage sorting, introgression and hybrid speciation in the Neolamprologus savoryi‐complex (the ‘Princess cichlids’) from Lake Tanganyika. We present a time‐calibrated species tree based on whole‐genome sequences and provide strong evidence for incomplete lineage sorting in the early phases of diversification and multiple introgression events affecting different stages. Importantly, we find that the Neolamprologus chromosomes show centre‐to‐periphery biases in nucleotide diversity, sequence divergence, GC content, incomplete lineage sorting and rates of introgression, which are likely modulated by recombination density and linked selection. The detection of heterogeneous genomic landscapes has strong implications on the genomic mechanisms involved in speciation. Collinear chromosomal regions can be protected from gene flow and harbour incompatibility genes if they reside in lowly recombining regions, and coupling can evolve between nonphysically linked genomic regions (chromosome centres in particular). Simultaneously, higher recombination towards chromosome peripheries makes these more dynamic, evolvable regions where adaptation polymorphisms have a fertile ground. Hence, differences in genome architecture could explain the levels of taxonomic and phenotypic diversity seen in taxa with collinear genomes and might have contributed to the spectacular cichlid diversity observed today.  相似文献   

10.
KS Lee  RN Kim  BH Yoon  DS Kim  SH Choi  DW Kim  SH Nam  A Kim  A Kang  KH Park  JE Jung  SH Chae  HS Park 《Bioinformation》2012,8(11):532-534
Recently, next generation sequencing (NGS) technologies have led to a revolutionary increase in sequencing speed and costefficacy. Consequently, a vast number of contigs from many recently sequenced bacterial genomes remain to be accurately mapped and annotated, requiring the development of more convenient bioinformatics programs. In this paper, we present a newly developed web-based bioinformatics program, Bacterial Genome Mapper, which is suitable for mapping and annotating contigs that have been assembled from bacterial genome sequence raw data. By constructing a multiple alignment map between target contig sequences and two reference bacterial genome sequences, this program also provides very useful comparative genomics analysis of draft bacterial genomes. AVAILABILITY: The database is available for free at http://mbgm.kribb.re.kr.  相似文献   

11.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   

12.
Next‐generation sequencing allows access to a large quantity of genomic data. In plants, several studies used whole chloroplast genome sequences for inferring phylogeography or phylogeny. Even though the chloroplast is a haploid organelle, NGS plastome data identified a nonnegligible number of intra‐individual polymorphic SNPs. Such observations could have several causes such as sequencing errors, the presence of heteroplasmy or transfer of chloroplast sequences in the nuclear and mitochondrial genomes. The occurrence of allelic diversity has practical important impacts on the identification of diversity, the analysis of the chloroplast data and beyond that, significant evolutionary questions. In this study, we show that the observed intra‐individual polymorphism of chloroplast sequence data is probably the result of plastid DNA transferred into the mitochondrial and/or the nuclear genomes. We further assess nine different bioinformatics pipelines’ error rates for SNP and genotypes calling using SNPs identified in Sanger sequencing. Specific pipelines are adequate to deal with this issue, optimizing both specificity and sensitivity. Our results will allow a proper use of whole chloroplast NGS sequence and will allow a better handling of NGS chloroplast sequence diversity.  相似文献   

13.
欧竑宇 《微生物学通报》2013,40(10):1909-1919
随着DNA测序技术的进步, 迄今为止已有12个链霉菌基因组被测序。面对海量组学的数据, 急需采用生物信息学方法来大规模深度挖掘这些重要微生物资源, 进而实现链霉菌资源挖掘和代谢潜力释放的深度互动。围绕链霉菌基因组比较分析中菌株特有的基因组岛和次生代谢物生物合成基因簇的识别及功能解析等两个常见问题, 本文收集了近期开发的一些常用生物信息学工具和二级数据库。以链霉菌染色体核心区和两臂的划分、天蓝色链霉菌和变铅青链霉菌基因组岛的识别、卡特利链霉菌巨型质粒的鉴别为例, 简介了这些生物信息学资源的使用方法。此外, 还简述了我们课题组进行放线菌型整合性接合元件识别和开发硫肽生物合成基因簇预测新工具的一些尝试。生物信息学工具和二级数据库在链霉菌基因组比较分析中有重要作用, 可将研究重点迅速地聚焦在某株菌的可移动遗传元件和次生代谢物生成基因簇上, 确定其对应的菌株特有表型, 及解析新型化合物生物合成和调控机理。  相似文献   

14.
随着高通量DNA测序技术的飞速发展,越来越多的物种完成了基因组测序.定位编码基因、确定编码基因结构是基因组注释的基本任务,然而以往的基因组注释方法主要依赖于DNA及RNA序列信息.为了更加精确地解读完成测序的基因组,我们需要整合多种类型的组学数据进行基因组注释.近年来,基于串联质谱技术的蛋白质组学已经发展成熟,实现了对蛋白质组的高覆盖,使得利用串联质谱数据进行基因组注释成为可能.串联质谱数据一方面可以对已注释的基因进行表达验证,另一方面还可以校正原注释基因,进而发现新基因,实现对基因组序列的重新注释.这正是当前进展较快的蛋白质基因组学的研究内容.利用该方法系统地注释已完成测序的基因组已成为解读基因组的一个重要补充.本文综述了蛋白质基因组学的主要研究内容和研究方法,并展望了该研究方向未来的发展.  相似文献   

15.
Zoysiagrass (Zoysia spp.), belonging to the genus Zoysia in the subfamily Chloridoideae, is widely used in domestic lawns, sports fields and as forage. We constructed high‐density genetic maps of Zoysia japonica using a restriction site‐associated DNA sequencing (RAD‐Seq) approach and an F1 mapping population derived from a cross between ‘Carrizo’ and ‘El Toro’. Two linkage maps were constructed, one for each of the parents. A map consisting of 2408 RAD markers distributed on 21 linkage groups was constructed for ‘Carrizo’. Another map with 1230 RAD markers mapped on 20 linkage groups was constructed for ‘El Toro’. The average distance between adjacent markers of the two maps was at 0.56 and 1.4 cM, respectively. Comparative genomics analysis was carried out among zoysiagrass, rice and sorghum genomes and a highly conserved collinearity in the gene order was observed among the three genomes. Chromosome collinearity was disrupted at centromeric regions for each chromosome pair between zoysiagrass and sorghum genomes. However, no obvious synteny gaps were observed across the centromeric regions between zoysiagrass and rice genomes. Two homologous chromosomes for each of the 10 sorghum chromosomes were found in the zoysiagrass genome, indicating an allotetraploid origin for zoysiagrass. The reduction of the basic chromosome number from 12 to 10 in chloridoids and panicoids took place via independent single‐step nested chromosome fusion events after the two subfamilies diverged from a common ancestor. The genetic maps will assist in genome sequence assembly, targeted gene isolation and comparative genomic analyses among grasses.  相似文献   

16.
Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high‐quality genome sequence of watermelon cultivar ‘Charleston Gray’, a principal American dessert watermelon, to complement the existing reference genome from ‘97103’, an East Asian cultivar. Comparative analyses between genomes of ‘Charleston Gray’ and ‘97103’ revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping‐by‐sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high‐quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the ‘Charleston Gray’ genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and Cmucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and Cmucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome‐wide association studies. The high‐quality ‘Charleston Gray’ genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.  相似文献   

17.
Transposable elements (TEs) – selfish DNA sequences that can move within the genome – comprise a large proportion of the genomes of many organisms. Although low‐coverage whole‐genome sequencing can be used to survey TE composition, it is noneconomical for species with large quantities of DNA. Here, we utilize restriction‐site associated DNA sequencing (RADSeq) as an alternative method to survey TE composition. First, we demonstrate in silico that double digest restriction‐site associated DNA sequencing (ddRADseq) markers contain the same TE compositions as whole genome assemblies across arthropods. Next, we show empirically using eight Synalpheus snapping shrimp species with large genomes that TE compositions from ddRADseq and low‐coverage whole‐genome sequencing are comparable within and across species. Finally, we develop a new bioinformatic pipeline, TERAD, to extract TE compositions from RADseq data. Our study expands the utility of RADseq to study the repeatome, making comparative studies of genome structure for species with large genomes more tractable and affordable.  相似文献   

18.
原核生物蛋白质基因组学研究进展   总被引:1,自引:0,他引:1  
随着基因组测序技术的不断发展,大量微生物基因组序列可以在短时间内得以准确鉴定。为了进一步探究基因组的结构与功能,基于序列特征与同源特征的基因组注释算法广泛应用于新测序物种。然而受基因组测序质量以及算法本身准确性偏低等问题的影响,现有的基因组注释存在着相当比例的假基因以及注释错误,尤其是蛋白质N端的注释错误。为了弥补基因组注释的不足,以基因芯片或RNA-seq为核心的转录组测序技术和以串联质谱为核心的蛋白质组测序技术可以高通量地对基因的转录和翻译产物进行精确测定,进而实现预测基因结构的实验验证。然而,原核生物细胞中存在的大量非编码RNA给转录组测序技术引入了污染数据,限制了其对基因组注释的应用。相对而言,以串联质谱技术为核心的蛋白质组学测序可以在短时间内鉴定到生物体内大量的蛋白质,实现注释基因的验证甚至校准。已成为基因组注释和重注释的重要依据,并因而衍生了"蛋白质基因组学"的新研究方向。文中首先介绍传统的基于序列预测和同源比对的基因组注释算法,指出其中存在的不足。在此基础上,结合转录组学与蛋白质组学的技术特点,分析蛋白质组学对于原核生物基因组注释的优势,总结现阶段大规模蛋白质基因组学研究的进展情况。最后从信息学角度指出当前蛋白质组数据进行基因组重注释存在的问题与相应的解决方案,进而探讨未来蛋白质基因组学的发展方向。  相似文献   

19.
Transfers of organelle DNA to the nucleus established several thousand functional genes in eukaryotic chromosomes over evolutionary time. Recent transfers have also contributed nonfunctional plastid (pt)- and mitochondrion (mt)-derived DNA (termed nupts and numts, respectively) to plant nuclear genomes. The two largest transferred organelle genome copies are 131-kb nuptDNA in rice (Oryza sativa) and 262-kb numtDNA in Arabidopsis (Arabidopsis thaliana). These transferred copies were compared in detail with their bona fide organelle counterparts, to which they are 99.77% and 99.91% identical, respectively. No evidence for purifying selection was found in either nuclear integrant, indicating that they are nonfunctional. Mutations attributable to 5-methylcytosine hypermutation have occurred at a 6- to 10-fold higher rate than other point mutations in Arabidopsis numtDNA and rice nuptDNA, respectively, revealing this as a major mechanism of mutational decay for these transferred organelle sequences. Short indels occurred preferentially within homopolymeric stretches but were less frequent than point mutations. The 131-kb nuptDNA is absent in the O. sativa subsp. indica or Oryza rufipogon nuclear genome, suggesting that it was transferred within the O. sativa subsp. japonica lineage and, as revealed by sequence comparisons, after its divergence from the indica chloroplast lineage. The time of the transfer for the rice nupt was estimated as 148,000 (74,000--296,000) years ago and that for the Arabidopsis numtDNA as 88,000 (44,000--176,000) years ago. The results reveal transfer and integration of entire organelle genomes into the nucleus as an ongoing evolutionary process and uncover mutational mechanisms affecting organelle genomes recently transferred into a new mutational environment.  相似文献   

20.
Species trees have traditionally been inferred from a few selected markers, and genome‐wide investigations remain largely restricted to model organisms or small groups of species for which sampling of fresh material is available, leaving out most of the existing and historical species diversity. The genomes of an increasing number of species, including specimens extracted from natural history collections, are being sequenced at low depth. While these data sets are widely used to analyse organelle genomes, the nuclear fraction is generally ignored. Here we evaluate different reference‐based methods to infer phylogenies of large taxonomic groups from such data sets. Using the example of the Oleeae tribe, a worldwide‐distributed group, we build phylogenies based on single nucleotide polymorphisms (SNPs) obtained using two reference genomes (the olive and ash trees). The inferred phylogenies are overall congruent, yet present differences that might reflect the effect of distance to the reference on the amount of missing data. To limit this issue, genome complexity was reduced by using pairs of orthologous coding sequences as the reference, thus allowing us to combine SNPs obtained using two distinct references. Concatenated and coalescence trees based on these combined SNPs suggest events of incomplete lineage sorting and/or hybridization during the diversification of this large phylogenetic group. Our results show that genome‐wide phylogenetic trees can be inferred from low‐depth sequence data sets for eukaryote groups with complex genomes, and histories of reticulate evolution. This opens new avenues for large‐scale phylogenomics and biogeographical analyses covering both the extant and the historical diversity stored in museum collections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号