首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study represents the first comprehensive molecular assessment of freshwater fishes and lampreys from Germany. We analysed COI sequences for almost 80% of the species mentioned in the current German Red List. In total, 1056 DNA barcodes belonging to 92 species from all major drainages were used to (i) build a reliable DNA barcode reference library, (ii) test for phylogeographic patterns, (iii) check for the presence of barcode gaps between species and (iv) evaluate the performance of the barcode index number (BIN) system, available on the Barcode of Life Data Systems. For over 78% of all analysed species, DNA barcodes are a reliable means for identification, indicated by the presence of barcode gaps. An overlap between intra‐ and interspecific genetic distances was present in 19 species, six of which belong to the genus Coregonus. The Neighbour‐Joining phenogram showed 60 nonoverlapping species clusters and three singleton species, which were related to 63 separate BIN numbers. Furthermore, Barbatula barbatula, Leucaspius delineatus, Phoxinus phoxinus and Squalius cephalus exhibited remarkable levels of cryptic diversity. In contrast, 11 clusters showed haplotype sharing, or low levels of divergence between species, hindering reliable identification. The analysis of our barcode library together with public data resulted in 89 BINs, of which 56% showed taxonomic conflicts. Most of these conflicts were caused by the use of synonymies, inadequate taxonomy or misidentifications. Moreover, our study increased the number of potential alien species in Germany from 14 to 21 and is therefore a valuable groundwork for further faunistic investigations.  相似文献   

2.
Sequence diversity in the cytochrome c oxidase subunit 1 gene has been shown to be an effective tool for species identification and discovery in various groups of animals, but has not been extensively tested in mammals. We address this gap by examining the performance of DNA barcodes in the discrimination of 87 species of bats from Guyana. Eighty‐one of these species showed both low intraspecific variation (mean = 0.60%), and clear sequence divergence from their congeners (mean = 7.80%), while the other six showed deeply divergent intraspecific lineages suggesting that they represent species complexes. Although further work is needed to examine patterns of sequence diversity at a broader geographical scale, the present study validates the effectiveness of barcoding for the identification of regional bat assemblages, even highly diverse tropical faunas.  相似文献   

3.
Anthropogenic impacts are an increasing threat to the diversity of fishes, especially in areas around large urban centres, and many effective conservation actions depend on accurate species identification. Considering the utility of DNA barcoding as a global system for species identification and discovery, this study aims to assemble a DNA barcode reference sequence library for marine fishes from the coastal region of São Paulo State, Brazil. The standard 652 bp ‘barcode’ fragment of the cytochrome c oxidase subunit I (COI) gene was PCR amplified and bidirectionally sequenced from 678 individuals belonging to 135 species. A neighbour‐joining analysis revealed that this approach can unambiguously discriminate 97% of the species surveyed. Most species exhibited low intraspecific genetic distances (0.31%), about 43‐fold less than the distance among species within a genus. Four species showed higher intraspecific divergences ranging from 2.2% to 7.6%, suggesting overlooked diversity. Notably, just one species‐pair exhibited barcode divergences of <1%. This library is a first step to better know the molecular diversity of marine fish species from São Paulo, providing a basis for further studies of this fauna – extending the ability to identify these species from all life stages and even fragmentary remains, setting the stage for a better understanding of interactions among species, calibrating the estimations about species composition and richness in an ecosystem, and providing tools for authenticating bioproducts and monitoring illegal species exploitation.  相似文献   

4.
The extraordinary species diversity of the Neotropical freshwater fish fauna is world renown. Yet, despite rich species diversity, taxonomic and genetic resources for its Cerrado ichthyofauna remain poorly developed. We provide a reference library of 149 DNA barcodes for 39 species/lineages of Cerrado headwater stream fishes from the Brazilian Distrito Federal and nearby areas and test the utility of distance-based criteria, tree-based criteria and minibarcodes for specimen identification. Mean Kimura 2-parameter genetic distances within species to orders ranged 1·8–12·1%. However, mean intraspecific v. congeneric-interspecific distances (0·9–1·3%) overlapped extensively and distance-based barcoding failed to achieve correct identifications due to c. 4–12·1% error rates and 19·5% ambiguous identifications related to the presence of singletons. Overlap was reduced and best-match success rates improved drastically to 83·5% when Characidium barcodes representing potential misidentifications or undescribed species were removed. Tree-based monophyly criteria generally performed similarly to distance methods, correctly differentiating up to c. 85% of species/lineages despite neighbour-joining and Bayesian tree errors (random lineage-branching events, long-branch attraction). Five clusters (Ancistrus aguaboensis, Characidium spp., Eigenmannia trilineata, Hasemania hanseni and Hypostomus sp. 2) exhibited deep intraspecific divergences or para−/polyphyly and multiple Barcode Index Number assignments indicative of putative candidate species needing taxonomic re-examination. Sliding-window analyses also indicated that a 200 bp minibarcode region performed just as well at specimen identification as the entire barcode gene. Future DNA barcoding studies of Distrito Federal–Cerrado freshwater fishes will benefit from increased sampling coverage, as well as consideration of minibarcode targets for degraded samples and next-generation sequencing.  相似文献   

5.
The performance of DNA barcoding as a tool for fast taxonomic verification in ecological assessment projects of small mammals was evaluated during a collecting trip to a lowland tropical rainforest site in Suriname. We also compared the performance of tissue sampling onto FTA CloneSaver cards vs. liquid nitrogen preservation. DNA barcodes from CloneSaver cards were recovered from 85% of specimens, but DNA degradation was apparent, because only 36% of sequence reads were long (over 600 bp). In contrast, cryopreserved tissue delivered 99% barcode recovery (97% > 600 bp). High humidity, oversampling or tissue type may explain the poor performance of CloneSaver cards. Comparison of taxonomic assignments made in the field and from barcode results revealed inconsistencies in just 3.4% of cases and most of the discrepancies were due to field misidentifications (3%) rather than sampling/analytical error (0.5%). This result reinforces the utility of DNA barcoding as a tool for verification of taxonomic identifications in ecological surveys, which is especially important when the collection of voucher specimens is not possible.  相似文献   

6.
In this study we tested the use of mucus from five species of Neotropical marine batoid elasmobranchs to extract genomic DNA for barcoding and phylogenetic analysis. The DNA from all individuals sampled was successfully amplified and sequenced for molecular barcode, allowing 99–100% accuracy to the species level. This method proved to provide reliable and good-quality DNA for barcoding and phylogenetic analysis of Neotropical elasmobranchs, through rapid handling and with low disturbance to animals.  相似文献   

7.
Coleoids are part of the Cephalopoda class, which occupy an important position in most oceans both at an ecological level and at a commercial level. Nevertheless, some coleoid species are difficult to distinguish with traditional morphological identification in cases when specimens are heavily damaged during collection or when closely related taxa are existent. As a useful tool for rapid species assignment, DNA barcoding may offer significant potential for coleoid identification. Here, we used two mitochondrial fragments, cytochrome c oxidase I and the large ribosomal subunit (16S rRNA), to assess whether 34 coleoids accounting for about one-third of the Chinese coleoid fauna could be identified by DNA barcoding technique. The pairwise intra- and interspecific distances were assessed, and relationships among species were estimated by NJ and bayesian analyses. High levels of genetic differentiation within Loliolus beka led to an overlap between intra- and interspecific distances. All remaining species forming well-differentiated clades in the NJ and bayesian trees were identical for both fragments. Loliolus beka possessed two mitochondrial lineages with high levels of intraspecific distances, suggesting the occurrence of cryptic species. This study confirms the efficacy of DNA barcoding for identifying species as well as discovering cryptic diversity of Chinese coleoids. It also lays a foundation for other ecological and biological studies of Coleoidea.  相似文献   

8.
The Yangtze River is the longest river in China and is divided into upstream and mid‐downstream regions by the Three Gorges (the natural barriers of the Yangtze River), resulting in a complex distribution of fish. Dramatic changes to habitat environments may ultimately threaten fish survival; thus, it is necessary to evaluate the genetic diversity and propose protective measures. Species identification is the most significant task in many fields of biological research and in conservation efforts. DNA barcoding, which constitutes the analysis of a short fragment of the mitochondrial cytochrome c oxidase subunit I (COI) sequence, has been widely used for species identification. In this study, we collected 561 COI barcode sequences from 35 fish from the midstream of the Yangtze River. The intraspecific distances of all species were below 2% (with the exception of Acheilognathus macropterus and Hemibarbus maculatus). Nevertheless, all species could be unambiguously identified from the trees, barcoding gaps and taxonomic resolution ratio values. Furthermore, the COI barcode diversity was found to be low (≤0.5%), with the exception of H. maculatus (0.87%), A. macropterus (2.02%) and Saurogobio dabryi (0.82%). No or few shared haplotypes were detected between the upstream and downstream populations for ten species with overall nucleotide diversities greater than 0.00%, which indicated the likelihood of significant population genetic structuring. Our analyses indicated that DNA barcoding is an effective tool for the identification of cyprinidae fish in the midstream of the Yangtze River. It is vital that some protective measures be taken immediately because of the low COI barcode diversity.  相似文献   

9.
DNA barcoding uses a short, standardized DNA fragment to sort individuals into species. This molecular technique has applications in fields including ecology, evolution, conservation, and biogeography. In ecological applications such as species monitoring and habitat restoration, its potential has not been fully realized and implemented. Invertebrates are excellent biological indicators, as changes in species diversity or community assemblage provide important insights into the condition of, or changes in, the environment. This information is particularly useful within the context of restoration ecology. In this study, DNA barcoding is used to assess the potential of Hemiptera as a biological indicator of restoration success for the Buffelsdraai Landfill Site Community Reforestation Project (Durban, South Africa). A total of 393 Hemiptera specimens were collected from sites reforested at distinct phases (plots reforested in 2010, 2012, and 2015) and two reference sites (natural forest and grassland). The Hemiptera species composition and assemblage were assessed by analyzing diversity indices, ordination, unweighted pair‐group average cluster analysis, and phylogenetic analysis. Hemiptera species composition varied significantly across the chronologically different reforested sites, with a higher species richness observed in the older reforested plots. This suggests that Hemiptera diversity can be used to track restoration success, even over the small temporal scale used in this study. This study highlights the utility of DNA barcoding as a taxonomic sorting tool both to monitor ecological restoration and to discover specific taxa within Hemiptera that may be useful biological indicators.  相似文献   

10.
DNA sequences of cytochrome c oxidase I gene (COI) from Lepidion spp. were employed to test the efficiency of species identification. A sample of 32 individuals from five Lepidion species was sequenced and combined with 26 sequences from other BOLD projects. As a result, 58 Lepidion DNA sequences of the COI gene belonging to eight of the nine recognized Lepidion species were analysed. Sequences were aligned and formed seven clades in a Bayesian phylogenetic tree, where Lepidion lepidion and Lepidion eques grouped jointly. The Kimura 2‐parameter genetic distances, among congeners were, on average, 4.28%, 16 times greater than among conspecifics (0.27%). The main diagnostic meristic data of Lepidion spp. were compiled and a detailed morphological revision of the congeneric species L. eques and L. lepidion was made. The eye diameter was significantly different between L. eques and L. lepidion (P < 0.001). The number of anal fin rays ranged from 45 to 51 in L. lepidion and from 47 to 54 in L. eques, but no significant differences were obtained in the mean values of this variable (P = 0.07). According to the morphological and genetic analyses, the results strongly suggest that the Mediterranean codling L. lepidion and the North Atlantic codling L. eques are conspecific, making L. eques a junior synonym of L. lepidion.  相似文献   

11.
Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis.  相似文献   

12.
The mitochondrial cytochrome c oxidase subunit I gene is the standard DNA barcoding region used for species identification and discovery. We examined the variation of COI (454 bp) to discriminate 20 species of bats in the family Phyllostomidae that are found in the Yucatan Peninsula of southeastern Mexico and northern Guatemala and compared them genetically to other samples from Central America. The majority of these species had low intraspecific variation (mean = 0.75%), but some taxa had intraspecific variation ranging to 8.8%, suggesting the possibility of cryptic species (i.e. Desmodus rotundus and Artibeus jamaicensis). There was a recurring biogeographic pattern in eight species with a separation of northern and southern Middle American localities. The Yucatan Peninsula was a discrete area identified in four species, whereas Panama was recovered in five species of phyllostomid bats. Our study establishes a foundation for further molecular work incorporating broader taxonomic and geographic coverage to better understand the phylogeography and genetic diversity that have resulted from the ecological constraints in this region and the remarkable differentiation of bats in the Neotropics.  相似文献   

13.
Hyles t. tithymali on the Canary Islands has been observed to occur in two larval morphotypes, connected by intermediate forms along a geographical cline from east to west. In this study, it was tested whether this distribution of phenotypes reflects a genealogical division of the population. mtDNA sequence data (COI + II, tRNA-leu) and genomic fingerprints from intersimple sequence repeat (ISSR)-PCR data were used. The sequence data had low variation (max. 0.4%), and phylogenetic analyses did not reveal groups that correlated with the morphotype. The samples did not group according to their island of origin and the most common haplotype was shared among all islands. Although nine haplotypes occurred only on the westernmost islands, the data showed little phylogeographical structure. The population of H. t. tithymali appears to reflect a comparatively rapid and recent colonization event of the Canary Islands. The ISSR-PCR data were very variable and did not reveal patterns corresponding to morphological variation or geographical distribution. Although the two morphs observed may represent the first stage of differentiation between two lineages, the recent origin of H. t. tithymali provided insufficient time for complete lineage sorting of ancestral polymorphism. Hence, the population of Hyles t. tithymali on the Canary Islands appears genetically more homogeneous than that was expected from the phenotypic distribution of the two morphotypes in the population.  相似文献   

14.
For comparative primatology proper recognition of basal taxa (i.e. species) is indispensable, and in this the choice of a suitable gene with high phylogenetic resolution is crucial. For the goals of species identification in animals, the cytochrome c oxidase subunit 1 (cox1) has been introduced as standard marker. Making use of the difference in intra- and interspecific genetic variation – the DNA barcoding gap – cox1 can be used as a fast and accurate marker for the identification of animal species. For the Order Primates we compare the performance of cox1 (166 sequences; 50 nominal species) in species-identification with that of two other mitochondrial markers, 16S ribosomal RNA (412 sequences, 92 species) and cytochrome b (cob: 547 sequences, 72 species). A wide gap exist between intra- and interspecific divergences for both cox1 and cob genes whereas this gap is less apparent for 16S, indicating that rRNA genes are less suitable for species delimitation in DNA barcoding. For those species where multiple sequences are available there are significant differences in the intraspecific genetic distances between different mitochondrial markers, without, however, showing a consistent pattern. We conclude that cox1 allows accurate differentiation of species and as such DNA barcoding may have an important role to play in comparative primatology.  相似文献   

15.
16.
This research was aimed to analyse the genetic diversity of Geraeocormobius sylvarum, a forest‐dwelling Neotropical harvestman with a disjunct distribution, separated by approximately 630 km of semi‐arid environments. The usefulness of a fragment of the cytochrome c oxidase subunit I (COI) mitochondrial gene as molecular marker was tested in 109 individuals. Results showed high levels of both haplotype and nucleotide diversity in populations corresponding to north‐eastern Argentina, the core area of the species range. A strong genetic structuring was detected, supported by both the phylogenetic trees and the haplotype network, with six identifiable haplogroups. Populations of the Yungas ecoregion did not show significant diversity levels, suggesting a putative recent introduction of the species into that region. The overall results suggest that the present genetic diversity of the species is consistent with past fragmentation events of the species range (in refuges?), probably during the Last Glacial Maximum. The COI gene was concluded to be a well‐suited marker to associate past environmental events with the high genetic diversity observed in this species.  相似文献   

17.
Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut‐offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a naïve Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high‐throughput environmental sequencing. This method provides rank‐flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast ‐based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave‐one‐out cross‐validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut‐offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.  相似文献   

18.
The mid‐north‐eastern Caatinga is a semiarid freshwater ecoregion in North‐eastern Brazil that is dominated by temporary rivers and is currently classified as one of the least ichthyologically‐known ecoregions in the world. The present study aimed to provide an updated checklist of mid‐north‐eastern Caatinga ecoregion (MNCE) freshwater fish species and evaluate their taxonomic identity using morphology, DNA barcoding and multiple species delimitation approaches. After reviewing published studies and ichthyological collections, 119 species were identified. Among these were 94 putatively valid native and 14 non‐native species, five undescribed native species, four new records for the MNCE, 11 potential cases of misidentification and 14 species listed as inquirenda. Additionally, 252 individuals from 49 species were barcoded, revealing three potential taxonomic synonyms. The combined molecular approaches estimated a total of 91 native species, although a finalized species list for the MNCE awaits additional taxonomic revisions and field surveys. This study provides the most up‐to‐date species checklist for the MNCE and a molecular reference database for identifying MNCE fishes with DNA barcodes. Results highlight the need to integrate traditional taxonomy with molecular approaches to correctly identify species, especially in taxonomically problematic ecoregions such as the MNCE.  相似文献   

19.
The Quaternary period was marked by considerable changes in climate. Such palaeoclimatic changes affected the population dynamics of many species, both in the Northern and in the Southern Hemisphere. However, the extent of these impacts on the demographic patterns of Neotropical species presenting different ecological requirements remains unclear. Drosophila maculifrons DUDA 1947 belongs to the guaramunu group of Drosophila and represents a potential indicator of the genetic consequences caused by the climatic fluctuations of the Quaternary, because it seems to be sensitive to temperature and humidity shifts. The aim of this study was to evaluate the evolutionary processes subjacent to the patterns of intraspecific diversity and structure of different populations of D. maculifrons. In total, 152 individuals were collected in the south and south‐east Brazil. Phylogenetic and phylogeographical analyses were performed based on sequences of COI and COII mitochondrial genes. In general, the results pointed to Brazilian populations of D. maculifrons being extremely impoverished in terms of mitochondrial diversity and population structure, which could be explained by a recent population expansion event dated to approximately 12 000 years ago. In fact, with the assistance of species palaeo‐distribution modelling strategies, it was possible to infer that most of the sampled region did not present the D. maculifrons environmental suitability requirements at least during the period of the Last Glacial Maximum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 55–66.  相似文献   

20.
The barcoding of mitochondrial cytochrome c oxidase subunit 1 (coI) gene was amplified and sequenced from 16 species of freshwater fishes found in Lake Wivenhoe (south‐eastern Queensland, Australia) to support monitoring of reservoir fish populations, ecosystem function and water health. In this study, 630–650 bp sequences of the coI barcoding gene from 100 specimens representing 15 genera, 13 families and two subclasses of fishes allowed 14 of the 16 species to be identified and differentiated. The mean ± s.e . Kimura 2 parameter divergence within and between species was 0·52 ± 0·10 and 23·8 ± 2·20% respectively, indicating that barcodes can be used to discriminate most of the fish species accurately. The two terapontids, Amniataba percoides and Leiopotherapon unicolor, however, shared coI DNA sequences and could not be differentiated using this gene. A barcoding database was established and a qPCR assay was developed using coI sequences to identify and quantify proportional abundances of fish species in ichthyoplankton samples from Lake Wivenhoe. These methods provide a viable alternative to the time‐consuming process of manually enumerating and identifying ichthyoplankton samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号