首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crucial role of reproductive isolation in speciation has long been recognized; however, a limited number of studies quantify different isolation barriers and embed reproductive isolation in a phylogenetic context. In this study, we investigate reproductive isolation between the often sympatrically occurring orchid species, Gymnadenia conopsea and G. odoratissima. We examine the phylogenetic relationship between the two species and analyse floral isolation, fruit set and seed viability from interspecies crosses, as well as the ploidy level. Additionally, we quantify interspecies differences in floral signals and morphology. The results suggest that the two species have a sister–species relationship. In terms of reproductive isolation, we found complete floral isolation between the two species, but little to no post‐pollination isolation; the species also mostly had the same ploidy level in the studied populations. We also show clear distinctions in floral signals, as well as in floral size and spur length. We propose that respective adaptation to short‐ vs. long‐tongued pollinators was the driver of speciation in the here studied Gymnadenia species. Our study supports the key role of floral isolation in orchid speciation and shows that floral isolation is not restricted to highly specialized pollination systems, but can also occur between species with less specialized pollination.  相似文献   

2.
Biogeography of mammals on tropical Pacific islands   总被引:2,自引:0,他引:2  
Aim We examine the influence of geography on species richness and endemism of mammals on tropical Pacific archipelagos to determine the importance of intra‐ and inter‐archipelago speciation in promoting local and regional species richness. Location Thirty tropical Pacific archipelagos. Methods A distributional list of mammals on 30 archipelagos was compiled, and values for 10 geographical variables were estimated for each archipelago. Mammal species were placed in three different categories (continental, Pacific and endemic) based on their distribution. The total number of species and numbers of species within each category were related to the geographical variables using Poisson regression analysis. Results Species richness was related positively to variables describing land area, numbers of large islands and elevation; and negatively to variables describing isolation. Levels of endemism did not differ between volant and non‐volant species, but differed between mega‐ and microchiropterans. Main conclusions Variation in species richness of mammals in the tropical Pacific region can be accounted for by a combination of intra‐archipelago speciation within archipelagos composed of large islands, and inter‐archipelago speciation, particularly among more isolated archipelagos. Mammals were less widely distributed throughout the study area than previously found for butterflies, skinks or birds. However, the level of endemism was similar to that of skinks and birds on the same archipelagos, and was higher than that of butterflies.  相似文献   

3.
Sympatric speciation has been contentious since its inception, yet is increasingly recognized as important based on accumulating theoretical and empirical support. Here, we present a compelling case of sympatric speciation in a taxon of marine reef fishes using a comparative and mechanistic approach. Hexagrammos otakii and H. agrammus occur in sympatry throughout their ranges. Molecular sequence data from six loci, with complete sampling of the genus, support monophyly of these sister species. Although hybridization occurrs frequently with an allopatric congener in an area of slight distributional overlap, we found no F1 hybrids between the focal sympatric taxa throughout their coextensive ranges. We present genetic evidence for complete reproductive isolation based on SNP analysis of 382 individuals indicating fixed polymorphisms, with no shared haplotypes or genotypes, between sympatric species. To address questions of speciation, we take a mechanistic approach and directly compare aspects of reproductive isolation between allopatric and sympatric taxa both in nature and in the laboratory. We conclude that the buildup of reproductive isolation is strikingly different in sympatric vs. allopatric taxa, consistent with theoretical predictions. Lab reared hybrids from allopatric species crosses exhibit severe fitness effects in the F1 or backcross generation. No intrinsic fitness effects are observed in F1 hybrids from sympatric species pairs, however these treatments exhibited reduced fertilization success and complete pre‐mating isolation is implied in nature because F1 hybrid adults do not occur. Our study addresses limitations of previous studies and supports new criteria for inferring sympatric speciation.  相似文献   

4.
Simultaneous molecular dating of population and species divergences is essential in many biological investigations, including phylogeography, phylodynamics and species delimitation studies. In these investigations, multiple sequence alignments consist of both intra‐ and interspecies samples (mixed samples). As a result, the phylogenetic trees contain interspecies, interpopulation and within‐population divergences. Bayesian relaxed clock methods are often employed in these analyses, but they assume the same tree prior for both inter‐ and intraspecies branching processes and require specification of a clock model for branch rates (independent vs. autocorrelated rates models). We evaluated the impact of a single tree prior on Bayesian divergence time estimates by analysing computer‐simulated data sets. We also examined the effect of the assumption of independence of evolutionary rate variation among branches when the branch rates are autocorrelated. Bayesian approach with coalescent tree priors generally produced excellent molecular dates and highest posterior densities with high coverage probabilities. We also evaluated the performance of a non‐Bayesian method, RelTime, which does not require the specification of a tree prior or a clock model. RelTime's performance was similar to that of the Bayesian approach, suggesting that it is also suitable to analyse data sets containing both populations and species variation when its computational efficiency is needed.  相似文献   

5.
Ever since Ernst Mayr (1942) called ring species the ‘perfect demonstration of speciation’, they have attracted much interest from researchers examining how two species evolve from one. In a ring species, two sympatric and reproductively isolated forms are connected by a long chain of intermediate populations that encircle a geographic barrier. Ring species have the potential to demonstrate that speciation can occur without complete geographic isolation, in contrast to the classic model of allopatric speciation. They also allow researchers to examine the causes of reproductive isolation in the contact zone and to use spatial variation to infer the steps by which speciation occurs. According to the classical definition, a ring species must have (i) gradual variation through a chain of populations connecting two divergent and sympatric forms, and (ii) complete or nearly complete reproductive isolation between the terminal forms. But evolutionary biologists now recognize that the process of speciation might often occur with some periods of geographic contact and hybridization between diverging forms; during these phases, even partial reproductive isolation can limit gene flow and permit further divergence to occur. In this issue Bensch et al. (2009) make an exciting and important contribution by extending the ring species concept to a case in which the divergence is much younger and not yet advanced to full reproductive isolation. Their study of geographic variation in willow warblers (Phylloscopus trochilus; Fig. 1 ) provides a beautiful example of gradual variation through a ring of populations connecting two forms that are partially reproductively isolated where they meet, possibly due to divergent migratory behaviours of the terminal forms.
Figure 1 Open in figure viewer PowerPoint A male willow warbler resembling the southeastern‐migrating form (Phylloscopus trochilus acredula), on its breeding territory in central Sweden. (Photo: Anders Hedenström).  相似文献   

6.
Determining which forms of reproductive isolation have the biggest impact on the process of divergence is a major goal of speciation research. These barriers are often divided into those that affect the potential for hybridization (premating isolation), and those that occur after mating (postmating isolation), and much debate has surrounded the relative importance of these categories. Within the species Mimulus aurantiacus, red‐ and yellow‐flowered ecotypes occur in the southwest corner of California, and a hybrid zone occurs where their ranges overlap. We show that premating barriers are exclusively responsible for isolation in this system, with both ecogeographic and pollinator isolation contributing significantly to total isolation. Postmating forms of reproductive isolation have little or no impact on gene flow, indicating that hybrids likely contribute to introgression at neutral loci. Analysis of molecular variation across thousands of restriction‐site associated DNA sequencing (RAD‐seq) markers reveals that the genomes of these taxa are largely undifferentiated. However, structure analysis shows that these taxa are distinguishable genetically, likely due to the impact of loci underlying differentiated adaptive phenotypes. These data exhibit the power of divergent natural selection to maintain highly differentiated phenotypes in the face of gene flow during the early stages of speciation.  相似文献   

7.
Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni‐ or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene‐type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert‐Plante & Hendry, 2011, J. Evol. Biol. 24 : 2186–2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification.  相似文献   

8.
Understanding the processes of speciation is an important challenge in improving knowledge of the origin of biodiversity. One crucial point is to assess the causes of reproductive isolation, especially in the case of co‐occurring species. Differences in microscale spatial distribution in small organisms may blur the issue. We explored biological processes underlying speciation within dung beetles belonging to the vacca species complex (Scarabaeidae: Onthophagus). The two taxa of this complex, O. vacca and O. medius, not only are known to have a large overlapping Palearctic distribution range but also share the same cowpat with no physical barriers and no observed specific aggregated patterns in the local distribution. The present study aimed at determining the level of isolation between the two taxa and discusses the most likely scenario of the speciation (sympatry vs. allopatry) based on the Coyne & Orr's (2004) four criteria. We conducted a full study on populations sampled within the Mediterranean region integrating morphological analysis (digital image analysis of the elytral melanism pattern), two‐gene phylogenies, population genetic analyses on populations sampled from an area where both species occur and another one with O. vacca only, as well as intra‐ and interspecific mating and crossing bioassays. The variation in the elytral melanism pattern clearly followed a bimodal distribution, with O. medius being more melanic than O. vacca, with a very limited overlapping area. The two taxa are reproductively isolated, with a strong postzygotic incompatibility despite the absence of sexual isolation. Sequence analysis of both nuclear and mitochondrial markers revealed a deep divergence between the two taxa dating back to 8.7 Mya. All findings concurred with some phenological observations and the conclusion that the most likely scenario for speciation in the vacca complex was an allopatric speciation followed by secondary contact.  相似文献   

9.
Knowledge on interspecific pre‐ and post‐zygotic isolation mechanisms provides insights into speciation patterns. Using crosses (F1 and backcrosses) of two closely related flea beetles species, Altica fragariae and A. viridicyanea, specialized on different hosts in sympatry, we measured: (a) the type of reproductive isolation and (b) the inheritance mode of preference and host‐specific performance, using a joint‐scaling test. Each species preferred almost exclusively its host plant, creating strong prezygotic isolation between them, and suggesting that speciation may occur at least partly in sympatry. Reproductive isolation was intrinsic between females of A. fragariae and either A. viridicyanea or F1 males, whereas the other crosses showed ecologically dependent reproductive isolation, suggesting ecological speciation. The genetic basis of preference and performance was at least partially independent, and several loci coded for preference, which limits the possibility of sympatric speciation. Hence, both ecological and intrinsic factors may contribute to speciation between these species.  相似文献   

10.
Interspecific competition is assumed to play an important role in the ecological differentiation of species and speciation. However, empirical evidence for competition's role in speciation remains surprisingly scarce. Here, we studied the role of interspecific competition in the ecological differentiation and speciation of two closely related songbird species, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia). Both species are insectivorous and ecologically very similar. They hybridize in a secondary contact zone, which is a mosaic of sites where both species co‐occur (syntopy) and sites where only one species is present (allotopy). We analysed fine‐scale habitat data for both species in both syntopic and allotopic sites and looked for associations between habitat use and bill morphology, which have been previously shown to be more divergent in sympatry than in allopatry. We found that the two nightingale species differ in habitat use in allotopic sites, where L. megarhynchos occurred in drier habitats and at slightly higher elevations, but not in syntopic sites. Birds from allotopic sites also showed higher interspecific divergence in relative bill size compared to birds from syntopic sites. Finally, we found an association between bill morphology and elevation. Our results are consistent with the view that interspecific competition in nightingales has resulted in partial habitat segregation in sympatry and that the habitat‐specific food supply has in turn very likely led to bill size divergence. Such ecological divergence may enhance prezygotic as well as extrinsic postzygotic isolation and thus accelerate the completion of the speciation process.  相似文献   

11.
Population divergence can occur due to mechanisms associated with geographic isolation and/or due to selection associated with different ecological niches. Much of the evidence for selection‐driven speciation has come from studies of specialist insect herbivores that use different host plant species; however, the influence of host plant use on population divergence of generalist herbivores remains poorly understood. We tested how diet breadth, host plant species and geographic distance influence population divergence of the fall webworm (Hyphantria cunea; FW). FW is a broadly distributed, extreme generalist herbivore consisting of two morphotypes that have been argued to represent two different species: black‐headed and red‐headed. We characterized the differentiation of FW populations at two geographic scales. We first analysed the influence of host plant and geographic distance on genetic divergence across a broad continental scale for both colour types. We further analysed the influence of host plant, diet breadth and geographic distance on divergence at a finer geographic scale focusing on red‐headed FW in Colorado. We found clear genetic and morphological distinction between red‐ and black‐headed FW, and Colorado FW formed a genetic cluster distinct from other locations. Although both geographic distance and host plant use were correlated with genetic distance, geographic distance accounted for up to 3× more variation in genetic distance than did host plant use. As a rare study investigating the genetic structure of a widespread generalist herbivore over a broad geographic range (up to 3,000 km), our study supports a strong role for geographic isolation in divergence in this system.  相似文献   

12.
An important evolutionary question concerns whether one or many barriers are involved in the early stages of speciation. We examine pre‐ and post‐zygotic reproductive barriers between two species of butterflies (Heliconius erato chestertonii and H. e. venus) separated by a bimodal hybrid zone in the Cauca Valley, Colombia. We show that there is both strong pre‐ and post‐mating reproductive isolation, together leading to a 98% reduction in gene flow between the species. Pre‐mating isolation plays a primary role, contributing strongly to this isolation (87%), similar to previous examples in Heliconius. Post‐mating isolation was also strong, with absence of Haldane’s rule, but an asymmetric reduction in fertility (< 11%) in inter‐specific crosses depending on maternal genotype. In summary, this is one of the first examples of post‐zygotic reproductive isolation playing a significant role in early stages of parapatric speciation in Heliconius and demonstrates the importance of multiple barriers to gene flow in the speciation process.  相似文献   

13.
  • Distyly is a mechanism promoting cross‐pollination within a balanced polymorphism. Numerous studies show that the degree of inter‐morph sexual organ reciprocity (SOR) within species relates to its pollen‐mediated gene flow. Similarly, a lower interspecific SOR should promote interspecific isolation when congeners are sympatric, co‐blooming and share pollinators. In this comparative study, we address the significance of SOR at both intra‐ and interspecific levels.
  • Seventeen allopatric and eight sympatric populations representing four Primula species (P. anisodora, P. beesiana, P. bulleyana and P. poissonii) native to the Himalaya‐Hengduan Mountains were measured for eight floral traits in both long‐ and short‐styled morphs. GLMM and spatial overlap methods were used to compare intra‐ and interspecific SOR.
  • While floral morphology differed among four Primula species, SOR within species was generally higher than between species, but in species pairs P. poissonii/P. anisodora and P. beesiana/P. bulleyana, the SOR was high at both intra‐ and interspecific levels. We did not detect a significant variation in intraspecific SOR or interspecific SOR when comparing allopatric versus sympatric populations for all species studied.
  • As intraspecific SOR increased, disassortative mating may be promoted. As interspecific SOR decreased, interspecific isolation between co‐flowering species pairs also may increase. Hybridisation between congeners occurred when interspecific SOR increased in sympatric populations, as confirmed in two species pairs, P. poissonii/P. anisodora and P. beesiana/P. bulleyana.
  相似文献   

14.
Although there is mounting evidence that speciation can occur under sympatric conditions, unambiguous examples from nature are rare and it is almost always possible to propose alternative allopatric or parapatric scenarios. To identify an unequivocal case of sympatric speciation it is, therefore, necessary to analyse natural settings where recent monophyletic species flocks have evolved within a small and confined spatial range. We have studied such a case with a cichlid species flock that comprises five Tilapia forms endemic to a tiny lake (Lake Ejagham with a surface area of approximately 0.49 km2) in Western Cameroon. Analysis of mitochondrial D-Loop sequences shows that the flock is very young (approximately 10(4) years) and has originated from an adjacent riverine founder population. We have focused our study on a particular pair of forms within the lake that currently appears to be in the process of speciation. This pair is characterized by an unique breeding colouration and specific morphological aspects, which can serve as synapomorphic characters to prove monophyly. It has differentiated into a large inshore and a small pelagic form, apparently as a response to differential utilization of food resources. Still, breeding and brood care occurs in overlapping areas, both in time and space. Analysis of nuclear gene flow on the basis of microsatellite polymorphisms shows a highly restricted gene flow between the forms, suggesting reproductive isolation between them. This reproductive isolation is apparently achieved by size assortative mating, although occasional mixed pairs can be observed. Our findings are congruent with recent theoretical models for sympatric speciation, which show that differential ecological adaptations in combination with assortative mating could easily lead to speciation in sympatry.  相似文献   

15.
The species within the now well-defined Arabidopsis genus provide biological materials suitable to investigate speciation and the development of reproductive isolation barriers between related species. Even within the model species A. thaliana, genetic differentiation between populations due to environmental adaptation or demographic history can lead to cases where hybrids between accessions are non-viable. Experimental evidence supports the importance of genome duplications and genetic epistatic interactions in the occurrence of reproductive isolation. Other examples of adaptation to specific environments can be found in Arabidopsis relatives where hybridization and chromosome doubling lead to new amphidiploid species. Molecular signals of speciation found in the Arabidopsis genus should provide a better understanding of speciation processes in plants from a genetic, molecular and evolutionary perspective.  相似文献   

16.
Because they are considered rare, balanced polymorphisms are often discounted as crucial constituents of genome‐wide variation in sequence diversity. Despite its perceived rarity, however, long‐term balancing selection can elevate genetic diversity and significantly affect observed divergence between species. Here, we discuss how ancestral balanced polymorphisms can be “sieved” by the speciation process, which sorts them unequally across descendant lineages. After speciation, ancestral balancing selection is revealed by genomic regions of high divergence between species. This signature, which resembles that of other evolutionary processes, can potentially confound genomic studies of population divergence and inferences of “islands of speciation.”  相似文献   

17.
A major challenge for studying the role of sexual selection in divergence and speciation is understanding the relative influence of different sexually selected signals on those processes in both intra‐ and interspecific contexts. Different signals may be more or less susceptible to co‐option for species identification depending on the balance of sexual and ecological selection acting upon them. To examine this, we tested three predictions to explain geographic variation in long‐ versus short‐range sexual signals across a 3,500 + km transect of two related Australian field cricket species (Teleogryllus spp.): (a) selection for species recognition, (b) environmental adaptation and (c) stochastic divergence. We measured male calling song and male and female cuticular hydrocarbons (CHCs) in offspring derived from wild populations, reared under common garden conditions. Song clearly differentiated the species, and no hybrids were observed suggesting that hybridization is rare or absent. Spatial variation in song was not predicted by geography, genetics or climatic factors in either species. In contrast, CHC divergence was strongly associated with an environmental gradient supporting the idea that the climatic environment selects more directly upon these chemical signals. In light of recently advocated models of diversification via ecological selection on secondary sexual traits, the different environmental associations we found for song and CHCs suggest that the impact of ecological selection on population divergence, and how that influences speciation, might be different for acoustic versus chemical signals.  相似文献   

18.
We evaluated whether Batesian mimicry promotes early‐stage reproductive isolation. Many Batesian mimics occur not only in sympatry with their model (as expected), but also in allopatry. As a consequence of local adaptation within both sympatry (where mimetic traits are favored) and allopatry (where nonmimetic traits are favored), divergent, predator‐mediated natural selection should disfavor immigrants between these selective environments as well as any between‐environment hybrids. This selection might form the basis for both pre‐ and postmating isolation, respectively. We tested for such selection in a snake mimicry complex by placing clay replicas of sympatric, allopatric, or hybrid phenotypes in both sympatry and allopatry and measuring predation attempts. As predicted, replicas with immigrant phenotypes were disfavored in both selective environments. Replicas with hybrid phenotypes were also disfavored, but only in a region of sympatry where previous studies have detected strong selection favoring precise mimicry. By fostering immigrant inviability and ecologically dependent selection against hybrids (at least in some habitats), Batesian mimicry might therefore promote reproductive isolation. Thus, although Batesian mimicry has long been viewed as a mechanism for convergent evolution, it might play an underappreciated role in fueling divergent evolution and possibly even the evolution of reproductive isolation and speciation.  相似文献   

19.
Why organisms diversify into discrete species instead of showing a continuum of genotypic and phenotypic forms is an important yet rarely studied question in speciation biology. Does species discreteness come from adaptation to fill discrete niches or from interspecific gaps generated by reproductive isolation? We investigate the importance of reproductive isolation by comparing genetic discreteness, in terms of intra‐ and interspecific variation, between facultatively sexual monogonont rotifers and obligately asexual bdelloid rotifers. We calculated the age (phylogenetic distance) and average pairwise genetic distance (raw distance) within and among evolutionarily significant units of diversity in six bdelloid clades and seven monogonont clades sampled for 4211 individuals in total. We find that monogonont species are more discrete than bdelloid species with respect to divergence between species but exhibit similar levels of intraspecific variation (species cohesiveness). This pattern arises because bdelloids have diversified into discrete genetic clusters at a faster net rate than monogononts. Although sampling biases or differences in ecology that are independent of sexuality might also affect these patterns, the results are consistent with the hypothesis that bdelloids diversified at a faster rate into less discrete species because their diversification does not depend on the evolution of reproductive isolation.  相似文献   

20.
Hybrid speciation is constrained by the homogenizing effects of gene flow from the parental species. In the absence of post‐mating isolation due to structural changes in the genome, or temporal or spatial premating isolation, another form of reproductive isolation would be needed for homoploid hybrid speciation to occur. Here, we investigate the potential of behavioural mate choice to generate assortative mating among hybrids and parental species. We made three‐first‐generation hybrid crosses between different species of African cichlid fish. In three‐way mate‐choice experiments, we allowed hybrid and nonhybrid females to mate with either hybrid or nonhybrid males. We found that hybrids generally mated nonrandomly and that hybridization can lead to the expression of new combinations of traits and preferences that behaviourally isolate hybrids from both parental species. Specifically, we find that the phenotypic distinctiveness of hybrids predicts the symmetry and extent of their reproductive isolation. Our data suggest that behavioural mate choice among hybrids may facilitate the establishment of isolated hybrid populations, even in proximity to one or both parental species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号