首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microalgae biofuel production can be feasible when a second function is added, such as wastewater treatment. Microalgae differ in uptake of phosphorus (P) and growth, making top performer identification fundamental. The objective of this screen was to identify dual‐purpose candidates capable of high rates of P removal and growth. Three freshwater – Chlorella sp., Monoraphidium minutum sp., and Scenedesmus sp. – and three marine – Nannochloropsis sp., N. limnetica sp., and Tetraselmis suecica sp. – species were batch cultured in 250 mL flasks over 16 days to quantitate total phosphorus (TP) removal and growth as a function of P loads (control, and 5, 10, and 15 mg L?1 enrichment of control). Experimental design used 100 μmol m?2 s?1 of light, a light/dark cycle of 14/10 h, and no CO2 enrichment. Phosphorus uptake was dependent on species, duration of exposure, and treatment, with significant interaction effects. Growth was dependant on species and treatment. Not all species showed increased P removal with increasing P addition, and no species demonstrated higher growth. Nannochloropsis sp and N. limnetica sp. performed poorly across all treatments. Two dual‐purpose candidates were identified. At the 10 mg L?1 treatment Monoraphidium minutum sp. removed 67.1% (6.66 mg L?1 ± 0.60 SE) of TP at day 8, 79.3% (7.86 mg L?1 ± 0.28 SE) at day 16, and biomass accumulation of 0.63 g L?1 ± 0.06 SE at day 16. At the same treatment Tetraselmis suecica sp. removed 79.4% (6.98 mg L?1 ± 0.24 SE) TP at day 8, 83.0% (7.30 mg L?1 ± 0.60 SE) at day 16, and biomass of 0.55 g L?1 ± 0.02 SE at day 16. These species merit further study using high‐density wastewater cultures and lipid profiling to assess suitability for a nutrient removal and biomass/biofuel production scheme.  相似文献   

2.
A sectioned and polished specimen of the coral Archohelia vicksburgensis from the early Oligocene Byram Formation (~30 Ma) near Vicksburg, Mississippi, reveals 12 prominent annual growth bands. Stable oxygen isotopic compositions of 77 growth‐band‐parallel microsamples of original aragonite exhibit well‐constrained fluctuations that range between ?2.0 and ?4.8. Variation in δ18O of coral carbonate reflects seasonal variation in temperature ranging from 12 to 24 °C about a mean of 18 °C. These values are consistent with those derived from a bivalve and a fish otolith from the same unit, each using independently derived palaeotemperature equations. Mg/Ca and Sr/Ca ratios were determined for 40 additional samples spanning five of the 12 annual bands. Palaeotemperatures calculated using elemental‐ratio thermometers calibrated on modern corals are consistently lower; mean temperature from Mg/Ca ratios are 12.5 ± 1 °C while those from Sr/Ca are 5.8 ± 2.2 °C. Assuming that δ18O‐derived temperatures are correct, relationships between temperature and elemental ratio for corals growing in today's ocean can be used to estimate Oligocene palaeoseawater Mg/Ca and Sr/Ca ratios. Calculations indicate that early Oligocene seawater Mg/Ca was ~81% (4.2 mol mol?1) and Sr/Ca ~109% (9.9 mmol mol?1) of modern values. Oligocene seawater with this degree of Mg depletion and Sr enrichment is in good agreement with that expected during the Palaeogene transition from ‘calcite’ to ‘aragonite’ seas. Lower Oligocene Mg/Ca probably reflects a decrease toward the present day in sea‐floor hydrothermal activity and concomitant decrease in scavenging of magnesium from seawater. Elevated Sr/Ca ratio may record lesser amounts of Oligocene aragonite precipitation and a correspondingly lower flux of strontium into the sedimentary carbonate reservoir than today.  相似文献   

3.
The aim of this study was to evaluate whether increasing the levels of citrus pectin has anti‐nutritional effects when included in the diets of Mugil liza juveniles, including its effects on hepatic metabolism and modulation of the microbial community. Fish (mean weight 0.38 g ± 0.01) were stocked at a density of 15 fishes per tank and fed for 60 days with either a control diet or one of three diets containing different levels of pectin (4, 8 and 12%), in triplicates. The temperature, dissolved oxygen, pH, salinity and alkalinity during the trial were, respectively, 25.0°C ± 0.1, 6.82 ± 0.02 mg L?1, 8.10 ± 0.06 and 147 mg ± 12.93 CaCO3. The total ammonia‐nitrogen (TAN) in PC4, PC8 and PC12 treatments were, respectively, 0.69 ± 0.38; 0.57 ± 0.35; 0.64 ± 0.39 and 0.45 ± 0.23 mg L?1. The increasing diet viscosity with pectin inclusion did not cause significant differences in growth. Fish fed with pectin demonstrated a reduction in their percentage body dry matter, crude protein and ash. Hepatic glycogen levels were elevated in the group fed with 12% pectin, while there were no effects in cholesterol and triglycerides levels. Citrus pectin did not exert any modulatory effect on the microbial community. Although the pectin‐supplemented fish showed enteritis during the experimental period, this did not impair animal performance. However, the use of this polysaccharide as a binder in mullet (Mugil liza) diets for longer periods should be considered with caution.  相似文献   

4.
The removal efficiency of Cu2+ by Spirulina platensis (strain FACHB‐834), in viable and heat‐inactivated forms, was investigated in the presence and absence of linear alkylbenzene sulfonate (LAS). When the initial Cu2+ concentration was in the range of 0.5–1.5 mg · L?1, a slight increase in growth rate of FACHB‐834 was observed. In contrast, when Cu2+ or LAS concentrations were at or higher than 2.0 or 6.0 mg · L?1, respectively, the growth of FACHB‐834 was inhibited and displayed yellowing and fragmentation of filaments. The presence of LAS improved Cu2+ removal by ~20%, and accelerated attainment of Cu2+ retention equilibrium. For the 2‐ mg · L?1 Cu2+ treatments, retention equilibrium occurred within 2 d and showed maximum Cu2+ removal of 1.83 mg · L?1. In the presence of LAS, the ratio of extracellular bound Cu2+ to intracellular Cu2+ taken up by the cells was lower (1.05–2.26) than corresponding ratios (2.46–7.85) in the absence of LAS. The percentages of extracellular bound Cu2+ to total Cu2+ removal (both bound and taken up by cells) in the presence of LAS ranged from 51.2% to 69.3%, which was lower than their corresponding percentages (71.1%–88.7%) in the absence of LAS. LAS promoted biologically active transport of the extracellular bound form of Cu2+ into the cell. In contrast, the addition of LAS did not increase the maximum removal efficiency of Cu2+ (61.4% ± 5.6%) by heat‐inactivated cells compared to that of living cells (59.6% ± 6.0%). These results provide a theoretical foundation for designing bioremediation strategies using FACHB‐834 for use in surface waters contaminated by both heavy metals and LAS.  相似文献   

5.
Effects of ammonia stress on food ingestion, growth, digestion and antioxidant capacity were investigated in juvenile yellow catfish Pelteobagrus fulvidraco (Richardson) with initial body weights of 20.24 ± 0.18 g. The fish were reared in triplicate in 15 experimental tanks at a rate of 30 fish per tank for 56 days. Water was maintained at a dissolved oxygen (DO) level of over 6.2 mg L?1, pH 7.2–7.6, and temperature of 29.0 ± 1.5°C under a natural 12L: 12D photoperiod. Survival, food ingestion (FI), specific growth rate (SGR), food conversion efficiency (FCE), apparent digestibility coefficient (ADC), total antioxidant capacity (T‐AOC), levels of glutathione (GSH) and malonaldehyde (MDA), and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH‐PX) of the juveniles were determined in total ammonia nitrogen (NH3‐N+NH4‐N) levels of 0 (control group), 3.36, 6.72, 13.44 and 26.88 mg L?1. The results show that the survival, FI, SGR, FCE, and ADC decreased significantly with an increase in total ammonia nitrogen (p < .05), and a significantly negative correlation between SGR and total ammonia nitrogen levels (p < .05). T‐AOC, SOD, CAT, GSH‐PX and GSH in the blood, liver and gills were found to decline significantly with an increase in the total ammonia nitrogen level (p < .05), while the MDA in the blood, liver and gills was elevated significantly with the increase in total ammonia nitrogen (p < .05). The results indicate a threshold in the induction of the T‐AOC and activities of antioxidant enzymes in yellow catfish tissues with a total ammonia nitrogen increase. In the present study the total ammonia nitrogen threshold thus changed from 6.72 mg L?1 in the juvenile yellow catfish.  相似文献   

6.
Ninety‐nine swordspine snook Centropomus ensiferus (9.80 ± 0.3 g, mean ± SE) were studied in order to evaluate the influence of salinity on physiological properties under rearing conditions. Growth performance, survival rates, and ion concentrations (Na+, K+, Cl?) as well proximal composition were measured over 76 days. Fish were exposed to three experimental salinities (0, 10, 20 ‰ , three replicates per treatment) and maintained in plastic tanks with a recirculation system equipped with flow‐through aquaria pumps (533 L per tank). Fish were fed twice daily to apparent satiation; at the end of the experiment the weight of fish kept in 10 ‰ was higher than that of fish kept in 0 and 20 ‰ , however no significant differences (P > 0.05) were observed among the experimental salinities. Survival was significantly lower in 10 ‰ salinity than in fish kept in 20 and 0 ‰ salinities. No significant differences (P > 0.05) were found in the Condition factor (K), specific growth rate (SGR), or in plasma Na+, K+, or Cl? concentrations among treatments. Salinities also did not affect body composition (P > 0.05), but were significantly lower (P < 0.05) than at the start of the experiment. However, towards the end of the experiment a large accumulation of visceral fat in fish farmed in the three salinities (VFI > 4%) was observed. Water quality was within the optimum range (T: 28.7 ± 0.1°C; O2: 5.6 ± 0.1 mg L?1; ammonia: 0.2 mg L?1) for the growth of swordspine snook. Data indicates that Censiferus is an ionoregulator fish and able to cultivate successfully in various osmotic conditions, and in turn, maintain high levels of survival in captivity.  相似文献   

7.
The changes in nucleic acid‐based indices and protein variables of Chinese loach, Paramisgurnus dabryanus, larvae and juveniles from hatching to 60 days after hatching (DAH) were conducted to assess its growth potential. The nucleic acid contents were analysed using a UV‐based method (n = 3, rearing temperature 24.4 ± 0.4°C, dissolve oxygen 7.1 ± 0.5 mg L?1, pH 7.9 ± 0.4). Ribonucleic acid (RNA) concentration significantly decreased from 2 to 5 DAH, then increased rapidly until 10 DAH, declining slightly thereafter. Deoxyribonucleic acid (DNA) concentration increased 2–5 DAH, decreased until 9 DAH, slightly increased again around 26 DAH, and then declined to a relatively stable level. Both RNA‐DNA and protein‐DNA ratios showed a statistically obvious relationship with growth rates. A significantly positive relationship was found between RNA‐DNA ratio and growth rates during the early life stage of Chinese loach. According to the results, growth of Chinese loach is characterized by rapid hyperplasia from hatching through completion of the yolk‐sac stage followed by continued rapid hyperplasia combined with increasing hypertrophy after feeding commences. The stage preceding 17 DAH of Chinese loach P. dabryanus is presumed to be critical for its survival and growth at 24°C.  相似文献   

8.
A survey of intertidal habitats, including coastal rock pools, was undertaken across New South Wales (NSW), Australia, February to May 2012, to test the hypothesis that the distribution and abundance of threatened juvenile black cod Epinephelus daemelii (Günther, 1876) does not differ across marine bioregions. An assessment was also provided on their habitat use and site fidelity. Various methods were trialled to determine the best method for detecting juvenile E. daemelii, with the most suitable method being the deployment of small baited underwater high definition video cameras for a period of 30 min. Using these baited video cameras, sampling occurred across four bioregions in NSW, covering approximately 800 km of coastline. Within each bioregion, a minimum of nine locations was selected, and at each location a minimum of six intertidal habitats was surveyed for the presence of E. daemelii. Of 412 sites surveyed, a total of 20 juveniles (mean size = 16.7 cm ± 1.1 cm SE) were found in intertidal habitats along approx. 420 km of coastline. The smallest juvenile was LT 3 cm and the largest fish was stereo measured at LT 26.5 cm. E. daemelii were found to tolerate a large range of water quality parameters, particularly temperature (mean 21.7°C ± 0.7 SE, min = 16.8°C and max = 31.2°C) and dissolved oxygen (mean 11.2 mg L?1 ± 1.3 SE, min = 5.7 mg L?1 and max = 19.2 mg L?1). E. daemelii were found in habitats dominated by boulders and overhangs, indicating a preference for structural features that provide solid cover. No E. daemelii were recorded at sites that had algae as the dominant habitat type. Juvenile E. daemelii were found to display site fidelity to rock pool habitats, with two individuals recorded as remaining at their same sites for a period of 471 days, even though the rock pools were open to the ocean at high tides. This study indicates that the abundance of juvenile E. daemelii is low, especially north of Port Stephens where adults are most abundant. Use of the small baited video cameras proved to be a successful sampling method to confirm that juvenile E. daemelii utilise rock pool and shallow reef intertidal habitats in the early stages of their life cycle.  相似文献   

9.
10.
The objective of this experiment was to study the effects of metalaxyl enantiomers on the activity of roots and antioxidative enzymes in tobacco seedlings. Water culture experiment was conducted to analyze the effects of different concentrations of metalaxyl enantiomers (30 and 10 mg L?1) on root activity and leaf superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and malondialdehyde (MDA) content of tobacco seedlings. The results showed that metalaxyl significantly inhibited root activity and significantly improved leaf SOD, POD, and CAT activities and MDA content. A better physiological response in tobacco seedlings was observed at 30 mg L?1 than at 10 mg L?1 metalaxyl. The stereoselectivity for different enantiomers had no obvious effect on root activity and the leaf POD activity, but it affected significantly the SOD and CAT activities and MDA content. The SOD activity was promoted more by R‐enantiomer than by S‐enantiomer at 30 mg L?1 metalaxyl, and the same effect was observed on CAT activity from the beginning to the end of the stress period. The MDA content under the stress by R‐enantiomer was higher than that under the stress by S‐enantiomer at 10 mg L?1 metalaxyl.  相似文献   

11.
Commercial cultivation of Spirulina sp. is highly popular due to the presence of high amount of C‐phycocyanin (C‐PC ) and other valuable chemicals like carotenoids and γ‐linolenic acid. In this study, the pH and the concentrations of nitrogen and carbon source were manipulated to achieve improved cell growth and C‐PC production in NaCl‐tolerant mutant of Spirulina platensis . In this study, highest C‐PC (147 mg · L?1) and biomass (2.83 g · L?1) production was achieved when a NaCl‐tolerant mutant of S. platensis was cultivated in a nitrate and bicarbonate sufficient medium (40 and 60 mM, respectively) at pH 9.0 under phototrophic conditions. Kinetic study of wildtype S. platensis and its NaCl‐tolerant mutant was also done to determine optimum nitrate concentrations for maximum growth and C‐PC production. Kinetic parameter of inhibition (Haldane model) was fitted to the relationship between specific growth rate and substrate concentration obtained from the growth curves. Results showed that the maximum specific growth rate (μmax) for NaCl‐tolerant mutant increased by 17.94% as compared to its wildtype counterpart, with a slight increase in half‐saturation constant (Ks), indicating that this strain could grow well at high concentration of NaNO3. C‐PC production rate (Cmax) in mutant cells increased by 12.2% at almost half the value of Ks as compared to its wildtype counterpart. Moreover, the inhibition constant (Ki) value was 207.85% higher in NaCl‐tolerant mutant as compared to its wildtype strain, suggesting its ability to produce C‐PC even at high concentrations of NaNO3.  相似文献   

12.
This study evaluated the effects of fertilizer type and fish density on early growth and survival of silver therapon Leiopotherapon plumbeus (Kner, 1864) larvae reared in outdoor tanks. In the first experiment, larvae (1.92 ± 0.09 mm total length) were stocked into nine, 4 m3 tanks at an initial density of 0.5 larvae L?1 and reared for 42 days at an ambient temperature of 28.8–30.7°C. Three treatments with three replicates each were compared: organic (chicken manure, OF) or inorganic fertilizers (ammonium phosphate, IF) applied once every 2 weeks, and the unfertilized (NF) tanks serving as the control group. Water quality, zooplankton densities, survival or growth of L. plumbeus larvae did not vary significantly in either fertilized or unfertilized tanks. Fertilization resulted in elevated nutrient concentrations, which did affect survival (2.10%–6.07%) of the fish larvae. In the second experiment, larvae were stocked at densities of 0.4 or 0.6 larvae L?1 in tanks fertilized at 4–5 days interval with OF and IF for 30 days. Growth performance of L. plumbeus larvae was affected by fish density, with significantly larger (20.04 ± 2.65 mm in total length) and higher specific growth rate (SGR; 6.97 ± 0.48% day?1) at 0.4 larvae L?1 than at 0.6 L?1. Fry production did not vary significantly between fish density treatment groups given the same fertilizer types, but survival rates were improved at 0.4 L?1. Together, production of L. plumbeus larvae in outdoor tanks can be optimized at a lower stocking density, regardless of the type of fertilizer used.  相似文献   

13.
This study was conducted to test the replacement of fishmeal (FM) with a combination of corn gluten meal (CGM)‐soybean meal (SBM) (at a ratio of 58 : 42, respectively) fortified with lysine, taurine and monocalcium phosphate (MCP) in turbot (Scophthalmus maximus) diets. FM as the main protein source in the control diet (FM100) was replaced in 15% decrements while increasing the combination of replacement material: 85% FM (FM85), 70% FM (FM70), 55% FM (FM55) and 40% FM (FM40). The diets were fed to triplicate groups (n = 25 per group) for 9 weeks (water temperature, dissolved oxygen, pH and salinity of 18.59 ± 0.06°C, 7.32 ± 0.02 mg L?1, 7.73 ± 0.01 and 8.46 ± 0.04 g L?1, respectively). Initial weight of fish was 286.1 ± 0.1 g. At the end of the experiment, growth, feed and nutrient utilization performance of fish fed FM85 and FM70 were similar to FM100, but a further increase in plant protein led to a significant reduction of these parameters. Whole body, fillet, viscera and liver nutrient compositions were not affected significantly; however, whole body lipid levels were significantly lower in fish on FM55 and FM40 than those on FM100. The fish in–fish out ratio in the diets decreased from 2.12 in FM100 to 1.00 in FM40. The results suggest that the FM level could be reduced by 30% with a combined use of CGM‐SBM supplemented with lysine, taurine and MCP.  相似文献   

14.
15.
Schizochytrium mangrovei strain PQ 6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω‐3, DHA ) and squalene using a 30‐L bioreactor with a working volume of 15 L under various batch and fed‐batch fermentation process regimes. The fed‐batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L?1, 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g?1 · L?1, respectively, after a 96 h fed‐batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g?1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial‐scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium .  相似文献   

16.
Age and growth of Pinna bicolor were examined in the seagrass beds of Merambong shoal (N 1°19′55.62″; E 103°35′57.75″) off the south‐western coast of Johor, Peninsular Malaysia between May 2006 and April 2007. Monthly growth increment data of P. bicolor were analyzed using FiSAT software (FAO‐ICLARM Stock Assessment Tools) to estimate the asymptotic length (L) and growth coefficient (K). Average growth rate of P. bicolor was 1.42 (±0.01) cm per month; the estimated asymptotic length (L) and growth coefficient (K) were 34.66 cm and 0.88 per year, respectively. In their natural habitat, P. bicolor attain shell heights of approximately 17, 25 and 30 cm at the end of their first, second and third years of growth. The length–weight relationship was estimated as Log W = ?5.397 + 3.111Log L, and in exponential form the equation was W = 0.000004L3.111 (r2 = 0.99, P < 0.01). Habitat temperature and salinity ranged between 27.47 and 29.66°C and 28.66–33.00 ppt with a mean of 29.10 (±0.66) m°C and 30.52 (±1.41) ppt, respectively.  相似文献   

17.
The cardinal tetra, Paracheirodon axelrodi (Schultz), is the most important ornamental fish exported from Brazil and Colombia. During the transport of this species, Amazon fishermen usually add unmeasured amounts of tetracycline and/or table salt to the water in an effort to mitigate stress and mortality. The aim of the present study was to analyze the effect of salt, the antibiotic tetracycline and the ammonia chelating agent Amquel® in the transport of this species. Cardinal tetras were submitted to a 24‐h boat transport in water containing either tetracycline hydrochloride (2.5 mg L?1), Amquel® (26.41 mg L?1), tetracycline + table salt (2.5 mg L?1 + 66.67 mg L?1), or additive‐free water (control treatment). Whole‐body cortisol measurements showed that fish transported with any water additive had lower cortisol levels compared to control. However, based on ionoregulatory and water quality parameters, the addition of tetracycline, Amquel® or the combination tetracycline + salt to the water of transport of cardinal tetras is not recommended when compared to control. Although Amquel® helped stabilize the pH and diminish total ammonia levels in the transport water, this compound dramatically increased net Na+ and Cl? uptake, and therefore compromised cardinal tetra ionoregulation.  相似文献   

18.
The objectives of this experiment were to (i) determine the efficacy of essential oils of clove (CO) and Lippia alba (EOLA) to induce deep anaesthesia in juvenile specimens (49.0 ± 6.2 g body mass, 16.6 ± 0.8 cm; n = 8 per treatment) of meagre (Argyrosomus regius); and (ii) study the feasibility of these substances, together with 2‐phenoxyethanol (2‐PHE), as potential sedatives [low concentration: (i) EOLA: 12 mg L?1; (ii) CO: 1 mg L?1; and (iii) 2‐PHE: 33 mg·L ?1; n = 8 per treatment] for live fish transport of this species. All test were performed at a constant temperature (18°C). Thus, the main primary stress indicator (plasma cortisol) and secondary factors (plasma metabolites) were evaluated. In addition, growth hormone (GH) mRNA expression was also evaluated in the pituitary gland. The results indicated that EOLA is considered to be effective for deep anaesthesia when the concentration is close to 160 mg L?1, while CO produces the same effect when lower concentrations are added (40–50 mg L?1). Regarding sedative concentrations, a significant ~3‐fold increase in plasma cortisol levels was detected in the EOLA group when compared to control specimens. In addition, glucose levels were not reduced and significantly increased (~1.6‐fold) for 2‐PHE in relation to the control fish. None of the anaesthetics promoted a significant difference for GH expression with respect to the control group, but a significant ~2‐fold increase for 2‐PHE treatment with respect to the EOLA exposition was found in this gene expression. Results show that none of the anaesthetics analysed, at least in the ranges of concentrations used in this study (EOLA 12 mg L?1, CO 1 mg L?1, 2‐PHE 33 mg L?1), are recommended for live fish transport, as shown by the absence of inhibition on the stress parameters assessed.  相似文献   

19.
This study investigated the effect of high‐dose vitamin C supplementation on growth, tissue ascorbic acid concentrations and physiological response to transportation stress in juvenile silver pomfret, Pampus argenteus (initial average weight 6.2 ± 0.2 g). Three practical diets were formulated to contain 100 (control), 450 and 800 mg ascorbic acid/kg diet, respectively, supplied as l‐ascorbyl‐2‐polyphosphate. Each diet was fed to triplicate groups of fish in circular tanks (3 m ø, 1.5 m depth) (60 fish/tank) for 9 weeks. Growth did not change significantly with dietary vitamin C levels, although an improvement tendency with an increase in vitamin C supplementation was observed. Ascorbic acid concentrations in the liver and muscle of fish fed diets containing graded levels of vitamin C were positively correlated with dietary levels of this vitamin. Tissue ascorbic acid concentrations significantly increased with increasing vitamin C supplementation. After 9 weeks, the fish were subjected to transportation stress for 4 h to determine the influence of high vitamin C supplementation on the physiological response to this stressor. Serum cortisol, glucose and lactate levels significantly increased in stressed fish. Serum cortisol and glucose concentrations after stress were significantly higher in fish fed the control diet (7.91 μg L?1 and 0.80 mm , respectively) than in the other groups. However, there were no significant differences in serum cortisol and glucose levels after stress between the 450 and 800 mg kg?1 diets. No significant change could be found in serum lactate levels after stress among the different treatments. In conclusion, the dietary administration of high doses of vitamin C could reduce stress in silver pomfret and increase the survival of fish under stress conditions.  相似文献   

20.
Gallionella ferruginea is an iron‐oxidizing chemolithotrophic micro‐organism that lives in low‐oxygen conditions (0.1–1.5 mg L?1 saturation). It produces a stalk structure from the concave side of the cell depending on population development, pH and redox conditions. After Gallionella oxidizes ferrous iron, bacteriogenic iron oxides (BIOS) precipitate on the stalk material and over time the stalks and/or the precipitated BIOS attenuate trace metals from surrounding groundwater. Gallionella ferruginea biofilms were cultured in situ in an artificial channel (2000 × 300 × 250 mm) using groundwater sourced from a borehole 297 m below sea level in the Äspö Hard Rock Laboratory in southern Sweden. The pH of the groundwater in the channels was always between 7.4 and 7.7 with oxygen saturation below 1.5 mg L?1 and Eh between 100 and 200 mV. Oxygen eventually declined to <0.3 mg L?1, terminating prolific biofilm growth. Biofilms formed within 2 weeks and were sampled every 2 weeks over 3 months. Cell number, stalk length and ferric iron concentration were measured for each sample and trace metal concentration was measured by inductively coupled plasma mass spectrometry. Results from well‐developed in situ biofilms suggest that Gallionella could concentrate metals at levels up to 1 × 103‐fold higher than found within the host rock and more than 1 × 106 times the levels found in the groundwater. These new experiments were used to support the results from the well‐developed biofilms and to relate biofilm development and population characteristics to metal attenuation. After 3 months, rare earth element (REE) plots indicated that BIOS can accumulate metals at levels up to 1 × 104‐fold higher than found in the groundwater and fractionate heavy rare earth elements over light rare earth elements. Generally the presence of the organic phase promotes the adsorption of all lanthanides and actinides that are not adsorbed by the inorganic phase. The iron oxides are directly correlated with stalk length (R = 0.96), indicating that rapid REE and actinide adsorption requires both iron oxides and a nucleating biological structure for the iron oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号