首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether or not baiting influences stickleback catch per unit effort (CPUE) remains a matter of debate among stickleback researchers: While the opinions about the impact of baiting on CPUE differ, supporting quantitative data are scarce. The effect of baiting and trap type on nine‐spined stickleback (Pungitius pungitius) CPUE was studied in a field experiment conducted over four consecutive days in a small pond in northeastern Finland. The results show that baited traps yielded better (mean CPUE = 1.24 fish/trap/d) catches than unbaited traps (mean CPUE = 0.66); however, there were also differences in CPUE depending on the type of collapsible trap that was used. The trap type effect on CPUE seemed to differ among age classes – the finer meshed trap caught more young‐of‐the‐year fish than the coarse‐meshed one, whereas the opposite was true for the older and larger individuals. The results agree with those of an earlier more restricted study conducted in the same locality: Together, these results provide strong evidence for the positive impact of baiting on nine‐spined stickleback CPUE.  相似文献   

2.
3.
4.
The three‐spined stickleback (Gasterosteus aculeatus L.) is an important model organism for studying the molecular mechanisms of speciation and adaptation to salinity. Despite increased interest to microRNA discovery and recent publication on microRNA prediction in the three‐spined stickleback using bioinformatics approaches, there is still a lack of experimental support for these data. In this paper, high‐throughput sequencing technology was applied to identify microRNA genes in gills of the three‐spined stickleback. In total, 595 miRNA genes were discovered; half of them were predicted in previous computational studies and were confirmed here as microRNAs expressed in gill tissue. Moreover, 298 novel microRNA genes were identified. The presence of miRNA genes in selected ‘divergence islands’ was analysed and 10 miRNA genes were identified as not randomly located in ‘divergence islands’. Regulatory regions of miRNA genes were found enriched with selective SNPs that may play a role in freshwater adaptation.  相似文献   

5.
The central assumption of evolutionary theory is that natural selection drives the adaptation of populations to local environmental conditions, resulting in the evolution of adaptive phenotypes. The three‐spined stickleback (Gasterosteus aculeatus) displays remarkable phenotypic variation, offering an unusually tractable model for understanding the ecological mechanisms underpinning adaptive evolutionary change. Using populations on North Uist, Scotland we investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. Dissolved calcium was a significant predictor of plate and spine morph, while predator abundance was not. Stickleback latency to emerge from a refuge varied with morph, with populations with highly reduced plates and spines and high predation risk less bold. Our findings support strong directional selection in three‐spined stickleback evolution, driven by multiple selective agents.  相似文献   

6.
Parallel evolution is characterised by repeated, independent occurrences of similar phenotypes in a given habitat type, in different parts of the species distribution area. We studied body shape and body armour divergence between five marine, four lake, and ten pond populations of nine‐spined sticklebacks [Pungitius pungitius (Linnaeus, 1758)] in Fennoscandia. We hypothesized that marine and lake populations (large water bodies, diverse fish fauna) would be similar, whereas sticklebacks in isolated ponds (small water bodies, simple fish fauna) would be divergent. We found that pond fish had deeper bodies, shorter caudal peduncles, and less body armour (viz. shorter/absent pelvic spines, reduced/absent pelvic girdle, and reduced number of lateral plates) than marine fish. Lake fish were intermediate, but more similar to marine than to pond fish. Results of our common garden experiment concurred with these patterns, suggesting a genetic basis for the observed divergence. We also found large variation among populations within habitat types, indicating that environmental variables other than those related to gross habitat characteristics might also influence nine‐spined stickleback morphology. Apart from suggesting parallel evolution of morphological characteristics of nine‐spined sticklebacks in different habitats, the results also show a number of similarities to the evolution of three‐spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) morphology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 403–416.  相似文献   

7.
Phenotypically plastic changes in response to variation in perceived predation risk are widespread, but little is known about if and how social environment modulates induced responses to predation risk. We investigated the influence of perceived predation risk (i.e. chemical cues from a predator) and social environment (i.e. one, two or 20 individuals reared together) on three‐spined stickleback (Gasterosteus aculeatus) morphology in a factorial common garden experiment. We found that exposure to chemical cues from potential predators did not influence growth or body condition or induce more robust morphological defences (i.e. lateral plate numbers and dorsal spine lengths). However, sticklebacks exposed to predator cues developed longer caudal peduncles and larger eyes as compared with fish from the control treatment. As these responses may improve sticklebacks’ ability to avoid piscine predation, they might be adaptive. Social environment/density also influenced expression of some traits, but these effects were independent of predation‐risk treatment effects. In general, these results suggest that apart from the classic morphological defence structures, which appear mostly constitutive, three‐spined sticklebacks are capable of expressing potentially adaptive morphological responses to chemical cues from potential predators.  相似文献   

8.
Experiments done in aquaria under control and either turbid or densely vegetated conditions indicated that three‐spined stickleback Gasterosteus aculeatus sneaking behaviour is affected by decreased underwater visibility. Success of sneaking behaviour decreased significantly under increased turbidity but not increased vegetation density. The total number of sneaking attempts, including unsuccessful ones, was not affected by either form of decreasing visibility.  相似文献   

9.
Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three‐spined stickleback Gasterosteus aculeatus L. across a small‐scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three‐spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.  相似文献   

10.
While the genetic basis to plate morph evolution of the three‐spined stickleback (Gasterosteus aculeatus) is well described, the environmental variables that select for different plate and spine morphs are incompletely understood. Using replicate populations of three‐spined sticklebacks on North Uist, Scotland, we previously investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. While dissolved calcium proved a significant predictor of plate and spine morph, predator abundance did not. Ecol. Evol., xxx, 2014 and xxx performed a comparable analysis to our own to address the same question. They failed to detect a significant effect of dissolved calcium on morphological evolution, but did establish a significant effect of predation; albeit in the opposite direction to their prediction.  相似文献   

11.
The aim of the study was to determine the susceptibility to predation of Atlantic sturgeon larvae (Acipenser oxyrinchus) reared under traditional hatchery conditions. Experiments were conducted to determine whether predators would prey on Atlantic sturgeon if alternative prey was available and if the presence of substrate on the tank bottom impacted the number of Atlantic sturgeon consumed. European perch (Perca fluviatilis) was used as the predator, and the alternative prey were three‐spined stickleback (Gasterosteus aculeatus) or gudgeon (Gobio gobio). The predators and alternative prey were obtained from the wild. The mortality of sturgeon (n = 10) and alternative prey (n = 10) caused by four predators was recorded during 15 min trials. Trials with three‐spined stickleback and gudgeon as alternative prey were performed separately. Each experimental trial was repeated five times. The predators consumed significantly more Atlantic sturgeon than alternative prey in both the experimental setups when the bottom of the tank was covered with gravel and stone substrate and when there was no substrate. In trials with three‐spined stickleback the mortality of Atlantic sturgeon in both experimental setups was 94 ± 8.94%, while that of three‐spined stickleback in the setup with substrate was 20 ± 19.23%, and without substrate it was 22 ± 10.00%. European perch also consumed more Atlantic sturgeon than they did gudgeon, and the mean Atlantic sturgeon mortality in the experimental setup with substrate was 94 ± 5.48%, while for gudgeon it was 48 ± 8.37%. In the experimental setup without substrate the predators also consumed substantially more Atlantic sturgeon than gudgeon, with a mean Atlantic sturgeon mortality of 94 ± 8.94%, while for gudgeon it was 76 ± 5.48%. The study indicated that hatchery reared Atlantic sturgeon larvae are susceptible to predation by European perch. Predation could impact the survival of juvenile Atlantic sturgeon in the natural environment, and it could be one of the factors that is impeding the restoration of this species in the Baltic Sea basin.  相似文献   

12.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

13.
Predation can promote divergence between prey populations and contribute to ecological speciation. In theory, predators can also constrain prey population divergence. In coastal British Columbia, Canada, Gasterosteus aculeatus (three‐spined stickleback) species pairs only occur in lakes with a single species of predatory fish: Oncorhynchus clarkii (the cutthroat trout). Similar lakes containing additional predatory fish species (Cottus asper, prickly sculpins; Oncorhynchus mykiss, rainbow trout) contain only single species of morphologically intermediate stickleback, suggesting that these predators prevent the coexistence of stickleback species pairs. We conducted a mesocosm experiment to investigate how prickly sculpins might constrain divergence, by quantifying their impact on survival and natural selection on antipredator (armour) traits in F2 stickleback from a cross between ecologically divergent populations. We tested three hypotheses: (1) sculpin predation on sticklebacks reduces survival in a way that could result in their exclusion from certain niches; (2) sculpins compete with stickleback; (3) sculpins respond to prey vulnerabilities in similar ways to cutthroat trout, tending to constrain rather than to enhance divergence. We found that sculpins significantly reduce stickleback survival, that their presence per se does not reduce growth in stickleback, and that predation did not result in selection on any of the armour traits measured, or on gill raker length, which is an important trophic trait. These results tend to refute hypotheses (2) and (3), while supporting hypothesis (1). © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 877–885.  相似文献   

14.
The relaxation of predation and interspecific competition are hypothesized to allow evolution toward “optimal” body size in island environments, resulting in the gigantism of small organisms. We tested this hypothesis by studying a small teleost (nine‐spined stickleback, Pungitius pungitius) from four marine and five lake (diverse fish community) and nine pond (impoverished fish community) populations. In line with theory, pond fish tended to be larger than their marine or lake conspecifics, sometimes reaching giant sizes. In two geographically independent cases when predatory fish had been introduced into ponds, fish were smaller than those in nearby ponds lacking predators. Pond fish were also smaller when found in sympatry with three‐spined stickleback (Gasterosteus aculeatus) than those in ponds lacking competitors. Size‐at‐age analyses demonstrated that larger size in ponds was achieved by both increased growth rates and extended longevity of pond fish. Results from a common garden experiment indicate that the growth differences had a genetic basis: pond fish developed two to three times higher body mass than marine fish during 36 weeks of growth under similar conditions. Hence, reduced risk of predation and interspecific competition appear to be chief forces driving insular body size evolution toward gigantism.  相似文献   

15.
Reproductive maturation in both male and female three‐spined stickleback Gasterosteus aculeatus was strongly photoperiodic in a northern population (Alaska, 61° N) but not in a southern population (Oregon, 43° N) from western North America. Increasing reliance on photoperiod with increasing latitude is a general phenomenon among vertebrates, and is probably due to the anticipation of a narrower window of opportunity for reproduction and development at higher latitudes.  相似文献   

16.
An isolated population of the three‐spined stickleback Gasterosteus aculeatus in Croatia was found to have a high incidence of specimens either having a fourth dorsal spine or showing remnants of a fourth spine. Juvenile individuals showed a 9·4% incidence of a fourth spine. The population was examined for asymmetry of the skeletal defensive complex in order to determine whether the additional spine could be the result of developmental instability, a response to predation or environmental conditions.  相似文献   

17.
A 14 day experiment on effects of visible implant elastomer (VIE) tagging and spine‐clipping of three‐spined stickleback Gasterosteus aculeatus showed significant increases in immune response, particularly in the granulocyte:lymphocyte ratio, in both treatments and the sham control. A minimum two‐week recovery after handling, anaesthesia, tagging and spine‐clipping is recommended to minimize effect of manipulation on the immune system.  相似文献   

18.
Group living is widespread across animal taxa, incurring benefits such as increased foraging efficiency or an enhanced chance of surviving a predator's attack. The chances of escaping a predator are often lower for odd‐looking individuals, as these are detected at a higher rate than uniform looking group members. While this “oddity effect” shall operate in animals differing in any given phenotype, including colour, size or species identity, it has been experimentally tested mainly for odd‐coloured individuals. We examined the oddity effect and swarming preferences in two differently sized species of freshwater planktonic crustaceans (large Daphnia magna and small Daphnia pulex). We experimentally investigated whether odd individuals in a swarm of heterospecific Daphnia were more vulnerable to predation by a common predator, the three‐spined stickleback (Gasterosteus aculeatus). Furthermore, Daphnia's swarming preference was tested by giving individuals the opportunity to choose between conspecific/heterospecific odour and a neutral control. In contrast to the predictions of the oddity effect, odd individuals were not always preyed on earlier; instead three‐spined stickleback preferentially predated large, more nutritious individuals. Daphnia of both species reacted towards the perception of con‐ and heterospecifics odours. While D. pulex generally avoided the smell of other daphnids, D. magna avoided conspecifics but tended to prefer heterospecifics over the neutral control. These findings provide new insights into swarming strategies and social preference of an invertebrate and how this behaviour can influence predation risk.  相似文献   

19.
The ability to discriminate between related and unrelated individuals has been demonstrated in many species. The mechanisms behind this ability might be manifold and depend on the ecological context in which the species lives. In brood‐caring species, both familiarity and phenotype matching are known to be used in kin recognition. However, results of studies disentangling these two phenomena have proved contradictory. We aimed to broaden our knowledge about the mechanisms of kin recognition using shoaling preferences of three‐spined stickleback (Gasterosteus aculeatus) as a model behavior. In our first experiment, focal fish had the choice to shoal either with kin or unfamiliar non‐kin. In half of the trials, kin groups were composed of familiar individuals, while they were unfamiliar in the other half. Focal fish significantly preferred kin as shoaling partner, a result which was not reinforced by familiarity. In our second experiment, focal fish were given the choice between a shoal of familiar kin and a shoal of unfamiliar kin. Here, focal fish did not show any significant preference. These results indicate that familiarity does not impact stickleback's ability to recognize kin. Furthermore, they show that familiarity does not overrule recognition based on phenotype matching or innate recognition, underlining the importance of these mechanisms. Finally, our results lead to the assumption that individual recognition might play a minor role also in non‐kin‐based preferences for familiars.  相似文献   

20.
Current understanding of the immune system comes primarily from laboratory‐based studies. There has been substantial interest in examining how it functions in the wild, but studies have been limited by a lack of appropriate assays and study species. The three‐spined stickleback (Gasterosteus aculeatus L.) provides an ideal system in which to advance the study of wild immunology, but requires the development of suitable immune assays. We demonstrate that meaningful variation in the immune response of stickleback can be measured using real‐time PCR to quantify the expression of eight genes, representing the innate response and Th1‐, Th2‐ and Treg‐type adaptive responses. Assays are validated by comparing the immune expression profiles of wild and laboratory‐raised stickleback, and by examining variation across populations on North Uist, Scotland. We also compare the immune response potential of laboratory‐raised individuals from two Icelandic populations by stimulating cells in culture. Immune profiles of wild fish differed from laboratory‐raised fish from the same parental population, with immune expression patterns in the wild converging relative to those in the laboratory. Innate measures differed between wild populations, whilst the adaptive response was associated with variation in age, relative size of fish, reproductive status and S. solidus infection levels. Laboratory‐raised individuals from different populations showed markedly different innate immune response potential. The ability to combine studies in the laboratory and in the wild underlines the potential of this toolkit to advance our understanding of the ecological and evolutionary relevance of immune system variation in a natural setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号