首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study provides the first report of length–weight relationships (LWRs) for three fish species collected from the Yalong River, one of the tributaries to the upper reaches of the Yangtze River, China. The LWRs of these fish species were BW = 0.0070TL3.0539 (r2 = 0.9662) for Schizothorax wangchiachii, BW=0.0134TL2.8523 (r2 = 0.9676) for Schizopygopsis malacanthus, and BW=0.0143TL2.9253 (r2 = 0.8538) for Euchiloglanis kishinouyei, respectively. Also investigated were the spawning season, absolute fecundity and main food items of the three fish species in the natural environment. In addition, new maximum sizes for the three species are provided.  相似文献   

2.
1. Invasive species in aquatic systems are major drivers of changes in biodiversity. Amphipods are key species in freshwaters, with invasive amphipods either replacing or coexisting with native species and often damaging local biodiversity. However, the consequences of interactions among native and invasive amphipods for their habitat use and feeding ecology and ecosystem function are not yet well understood. 2. We examined a number of streams in Brittany and Northern Ireland, with native and invasive amphipods, to evaluate the consequences of species interactions for both habitat use and diet. Our field studies centred on testing two proposed models: a cohabitation model without competition between two native species (Gammarus pulex vs Echinogammarus berilloni), and a competition model between an invasive and a native species (Gammarus pulex vs Gammarus duebeni celticus). For these three species, alone and in combination, we assessed their habitat use and feeding patterns, the latter through gut contents and stable C and N isotope analyses of their tissues. 3. When existing as single‐species populations, all three species used stream habitats broadly similarly, although G. pulex was more strongly associated with leaf litter and vegetation compared to pebble substrata than the other species. When G. pulex coexisted with either E. berilloni or G. d. celticus, the latter two changed to using all habitats equally, whereas the former retained its habitat preferences. 4. Similarly, all three species when alone had similar gut contents, with inorganic material predominating, followed by leaf and woody material and more rarely algae and invertebrates. When G. pulex coexisted with E. berilloni, the diet of the latter did not change; however, the frequency of inorganic matter, leaves and wood declined in the gut contents of G. pulex. When G. pulex coexisted with G. d. celticus, the pattern of gut contents did not change in either species. 5. When existing as single‐species populations, G. pulex had a broader range of isotopic signatures, both for δ13C and for δ15N, than the two other species, indicating a more variable diet among individuals. When G. pulex coexisted with either E. berilloni or G. d. celticus, the latter two had similar ranges of δ13C and δ15N, whereas for G. pulex the range was much less for δ13C and δ15N, suggesting a less diverse diet. 6. Our results infer two different modes of coexistence between native and non‐native amphipods. We have shown that the native species, which coexist stably, appear to show interference competition, leading to spatial habitat segregation, whereas competition for food and possible intraguild predation by G. pulex on G. d. celticus would explain why the distribution and density of the latter is affected by G. pulex. However, since all the species have a similar diet and feeding habit, we expect no great overall effect on ecosystem processes as a consequence of species interactions and displacements.  相似文献   

3.
We conducted multinet sampling during winter and summer in the Southern Ocean (Atlantic sector) to investigate the effect of water mass, season and water depth on abundance and species composition of meso- and bathypelagic chaetognaths. Eukrohnia hamata (mean 115 ind. 1,000 m−3) and Sagitta marri (mean 51 ind. 1,000 m−3) were dominant, complemented by E. bathypelagica (mean 19 ind. 1,000 m−3) and E. bathyantarctica (mean 19 ind. 1,000 m−3) below 1,000 m. A further six species were identified, among them the rare bathypelagic species Heterokrohnia fragilis and the subtropical Eukrohnia macroneura that is new to the Antarctic. Water depth and season were the principal determinants of abundance and species composition patterns, indicating vertical seasonal migration and vertical segregation of species. The life cycles of E. hamata and S. marri were studied additionally. Their maturity stages were vertically segregated and prolonged reproductive periods are suggested for both species.  相似文献   

4.
The Shannon information function (H) has been extensively used in ecology as a statistic of species diversity. Yet, the use of Shannon diversity index has also been criticized, mainly because of its ambiguous ecological interpretation and because of its relatively great sensitivity to the relative abundances of species in the community. In my opinion, the major shortcoming of the traditional perspective (on the possible relation of species diversity with information theory) is that species need for an external receiver (the scientist or ecologist) to exist and transmit information. Because organisms are self-catalized replicating structures that can transmit genotypic information to offspring, it should be evident that any single species has two possible states or alternatives: to be or not to be. In other words, species have no need for an external receiver since they are their own receivers. Therefore, the amount of biological information (at the species scale) in a community with one only species would be log2 21 = 1 { \log }_{2} 2^{1} = 1 species, and not log2 1 = 0 { \log }_{2} 1 = 0 bits as in the traditional perspective. Moreover, species diversity appears to be a monotonic increasing function of log2 2\textS { \log }_{2} 2^{{\text{S}}} (or S) when all species are equally probable (S being species richness), and not a function of log2 \text S { \log }_{2} {\text{ S}} as in the traditional perspective. To avoid the noted shortcoming, we could use 2H (instead of H) for calculating species diversity and species evenness (= 2H/S). However, owing to the relatively great sensitivity of H to the relative abundances of species in the community, the value of species dominance (= 1 − 2H/S) is unreasonably high when differences between dominant and subordinate species are considerable, thereby lowering the value of species evenness and diversity. This unsatisfactory behaviour is even more evident for Simpson index and related algorithms. I propose the use of other statistics for a better analysis of community structure, their relationship being: species evenness + species dominance = 1; species diversity × species uniformity = 1; and species diversity = species richness × species evenness.  相似文献   

5.
Three strains (LM008T, LM068 and LM078T), representing two novel yeast species were isolated from the phylloplane of three plant species by an enrichment technique. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analysis of the D1/D2 domain of the large subunit rRNA gene and the internal spacer region, the three strains were assigned as two novel Candida species. Strain LM008T was assigned to be Candida sirachaensis sp. nov. (type strain LM008T = BCC 47628T = NBRC 108605T CBS 12094T) in the Starmerella clade. Two strains (LM068 and LM078T) represent a single species in the Lodderomyces-Spathaspora clade for which the name Candida sakaeoensis sp. nov. is proposed with the type strain LM078T = BCC 47632T = NBRC 108895T = CBS 12318T.  相似文献   

6.
Length–weight relationships (LWR), W = aLb, were estimated for nine fish species belonging to three orders, four families and nine genera from the Hunan Zhangjiajie Chinese Giant Salamander National Natural Reserve, in the northwestern part of Hunan Province of central China. Six of the species are endemic to China, of which three are also endemic to the Yangtze River. The r2 value ranged from 0.9546 to 0.9924. Values of b varied from 2.9177 to 3.6752. This study represents the first reference on LWR for nine species, and are new maximum length records for six species.  相似文献   

7.
We conducted a field investigation and evaluation of 13C natural abundance to determine the growth habit and propagation strategy of Acer catalpifolium Rehd., a tree species native to China that is highly endangered. The results showed that A. catalpifolium is a K‐selected strategist and pioneer species. Its narrow ecological range limits its geographical distribution, and poor fecundity limits its population size. The analysis of 13C natural abundance showed that A. catalpifolium does not use organic matter for reproduction when its stand volume is less than 1.08 × 106 cm3 or it is less than 18.6 m tall, but it does use this strategy when it has a sufficient 1.08 × 106 cm3 stand volume or more or is taller than 18.6 m. If environmental conditions are not conducive (e.g., severe human disturbance, cliff edges, or fierce interspecific competition) to the continued growth of the tree, A. catalpifolium may allocate organic matter for reproduction. Human disturbance seems to promote the population expansion of A. catalpifolium. We provide our suggestions for the promotion and protection of A. catalpifolium as a species.  相似文献   

8.
Current study reports the length‐weight relationships (LWRs) of three marine fish species collected from the fishermen catches covering three seasons i.e., rainy, autumn and winter between June, 2016 and February, 2017. Fishermen caught the species using beach seine net (3.5 cm mesh size) and set bag net (0.5 cm mesh size) up to 200 m far away from the shoreline. The LWRs for fish species were W = 0.0180TL3.192 for A. longispinnis, W = 0.0109TL2.971 for R. russeliana and W = 0.0098TL2.942 for C. neglecta with their r2 values of 0.971, 0.962 and 0.997, respectively.  相似文献   

9.
Five strains (LN12, LN14T, LN15T, LN16 and LN17T) representing three novel methylotrophic yeast species were isolated from the external surface of plant leaves by three-consecutive enrichments. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the phylogenetic analysis, the five strains were assigned to be one novel Ogataea species and two novel Candida species. Three strains (LN12, LN14T and LN16) represent a single novel species of the genus Ogataea, for which the name Ogataea phyllophila sp. nov. is proposed. The type strain is LN14T (= BCC 42666T = NBRC 107780T = CBS 12095T). Strain LN15T was assigned to be Candida chumphonensis sp. nov. (type strain LN15T = BCC 42667T = NBRC 107781T = CBS 12096T). Strain LN17T represented another novel species of Candida that was named Candida mattranensis sp. nov. (type strain LN17T = BCC 42668T = NBRC 107782T = CBS 12097T).  相似文献   

10.
This study provides length‐weight relationships (LWR) for three common marine species collected from Singapore, a small tropical island country in southeast Asia, where monthly collections using seine netting and fish trapping were performed at six sites from January to December 2010. The LWRs of these three species were BW = 0.0348 SL3.002 (n = 305, r2 = .9747) for Paracentropogon longispinis, BW = 0.0315 SL3.039 (n = 104, = .9798) for Trachicephalus uranoscopus and BW = 0.0651 SL3.021 (n = 70, r2 = .9601) for Synanceja horrida respectively.  相似文献   

11.
The biomass production and biochemical properties of marine and freshwater species of green macroalgae (multicellular algae), cultivated in outdoor conditions, were evaluated to assess the potential conversion into high-energy liquid biofuels, specifically biocrude and biodiesel and the value of these products. Biomass productivities were typically two times higher for marine macroalgae (8.5–11.9 g m−2 d−1, dry weight) than for freshwater macroalgae (3.4–5.1 g m−2 d−1, dry weight). The biochemical compositions of the species were also distinct, with higher ash content (25.5–36.6%) in marine macroalgae and higher calorific value (15.8–16.4 MJ kg−1) in freshwater macroalgae. Lipid content was highest for freshwater Oedogonium and marine Derbesia. Lipids are a critical organic component for biocrude production by hydrothermal liquefaction (HTL) and the theoretical biocrude yield was therefore highest for Oedogonium (17.7%, dry weight) and Derbesia (16.2%, dry weight). Theoretical biocrude yields were also higher than biodiesel yields for all species due to the conversion of the whole organic component of biomass, including the predominant carbohydrate fraction. However, all marine species had higher biomass productivities and therefore had higher projected biocrude productivities than freshwater species, up to 7.1 t of biocrude ha−1 yr−1 for Derbesia. The projected value of the six macroalgae was increased by 45–77% (up to US$7700 ha−1 yr−1) through the extraction of protein prior to the conversion of the residual biomass to biocrude. This study highlights the importance of optimizing biomass productivities for high-energy fuels and targeting additional coproducts to increase value.  相似文献   

12.
Mineral nutrient economy in competing species of Sphagnum mosses   总被引:1,自引:0,他引:1  
Bog vegetation, which is dominated by Sphagnum mosses, depends exclusively on aerial deposition of mineral nutrients. We studied how the main mineral nutrients are distributed between intracellular and extracellular exchangeable fractions and along the vertical physiological gradient of shoot age in seven Sphagnum species occupying contrasting bog microhabitats. While the Sphagnum exchangeable cation content decreased generally in the order Ca2+ ≥ K+, Na+, Mg2+ > Al3+ > NH4 +, intracellular element content decreased in the order N > K > Na, Mg, P, Ca, Al. Calcium occurred mainly in the exchangeable form while Mg, Na and particularly K, Al and N occurred inside cells. Hummock species with a higher cation exchange capacity (CEC) accumulated more exchangeable Ca2+, while the hollow species with a lower CEC accumulated more exchangeable Na+, particularly in dead shoot segments. Intracellular N and P, but not metallic elements, were consistently lower in dead shoot segments, indicating the possibility of N and P reutilization from senescing segments. The greatest variation in tissue nutrient content and distribution was between species from contrasting microhabitats. The greatest variation within microhabitats was between the dissimilar species S. angustifolium and S. magellanicum. The latter species had the intracellular N content about 40% lower than other species, including even this species when grown alone. This indicates unequal competition for N, which can lead to outcompeting of S. magellanicum from mixed patches. We assume that efficient cation exchange enables Sphagnum vegetation to retain immediately the cationic nutrients from rainwater. This may represent an important mechanism of temporal extension of mineral nutrient availability to subsequent slow intracellular nutrient uptake.  相似文献   

13.
We evaluated the effect of algal food density (1.5 × 106, 3.0 × 106 and 4.5 × 106 cells ml−1 of Chlorella) and temperature (22° and 28 °C) on competition among the rotifers Brachionus calyciflorus, Brachionus havanaensis, Brachionus patulus and Brachionus rubens, based on population growth experiments for 24 days. The growth experiments were conducted seperately for each individual rotifer species (i.e., controls), and in mixtures of all four species in equal initial proportions (i.e., under competition). The population growth of B. calyciflorus, B. havanaensis, B. patulus and B. rubens grown separately at two temperatures and at three algal food densities showed typical patterns of lag, exponential and retardation phases in the controls. This pattern differed considerably under competition. In general, we observed that in all of the test species, the highest growth rates were observed at higher food levels and in the absence of congenerics. At 22 °C, under the lowest food level, the differences in the population abundances of B. havanaensis, B. patulus and B. rubens grown alone and in the presence of competition were large. However, these differences reduced as food density was increased from 0.5 × 106 to 4.5 × 106 cells ml−1. At 28 °C and at the lowest food level, all of the other rotifer species eliminated B. havanaensis in mixed cultures. Each brachionid species had a higher rate when grown alone than when cultured with other species. The highest r (mean ± standard error: 0.54 ± 0.01 day−1) was recorded for B. havanaensis at 28 °C under 4.5 × 106 cells ml−1 of algal food density. At 28 °C at low algal food density, the presence of competitors resulted in negative population growth rates for three of the four rotifer species tested.  相似文献   

14.
We examined the hypothesis that genotypic variation among populations of commonly co‐occurring phreatophytic trees (Populus fremontii, Salix gooddingii) and the shrub (Salix exigua) regulates aboveground net primary productivity (ANPP) at a hot site at the edge of the species’ distribution. We used a provenance trial in which replicated genotypes from populations varying in mean annual temperature were transplanted to a common garden adjacent to the Lower Colorado River in southeastern California. The garden environment represented an extreme maximum temperature for the study species. Four major findings emerged: (1) Genotypic variation in ANPP was significant for all species with broad‐sense heritability (H2) across populations of 0.11, 0.13, and 0.10 for P. fremontii, S. gooddingii, and S. exigua, respectively, and within‐population H2 ranging from 0.00 to 0.25, 0.00 to 0.44, and 0.02 to 0.21, respectively. (2) Population ANPP decreased linearly as mean annual maximum temperature (MAMT) transfer distance increased for both P. fremontii (r2 = 0.64) and S. gooddingii (r2 = 0.37), whereas it did not change for S. exigua; (3) Populations with similar MAMT to that of the common garden were 1.5 and 1.2 times more productive than populations with 5.0 °C MAMT transfer distances for P. fremontii and S. gooddingii, respectively; and (4) Variation in regression slopes among species for the relationship between ANPP and MAMT indicate species‐specific responses to temperature. As these plant species characterize a threatened habitat type and support a diverse community that includes endangered species, ecosystem restoration programs should consider using both local genotypes and productive genotypes from warmer environments to maximize productivity of riparian ecosystems in the face of global climate change.  相似文献   

15.
Length–weight relationships are presented for 33 fish species from New Zealand. The parameters a and b of the equation W = aLb were estimated. Parameter b ranged from 2.51 (Pseudocaranx dentex) to 3.51 (Alepocephalus antipodianus) with a mean of 3.12 ± 0.24. Most of these estimates (90.9%) were between 2.8 and 3.4. Maximum lengths and depths of catch are updated for nine species.  相似文献   

16.
Predicting tropical plant physiology from leaf and canopy spectroscopy   总被引:1,自引:0,他引:1  
Doughty CE  Asner GP  Martin RE 《Oecologia》2011,165(2):289-299
A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.  相似文献   

17.
Fungi are usually thought not to have a boron (B) requirement. It is not known if mycorrhizas take up B from low concentrations that are common in forest soils, as fungi might also immobilise B. Here, we studied the B concentrations in sporophores of 49 ectomycorrhizal and 10 saprotrophic fungi to assess whether B is translocated in mycelium or not. Additionally, P and metal concentrations were measured for comparison. Variability both within species and between species was very large, as the lowest measured B concentration was 0.01 mg kg−1 in Amanita muscaria, and the highest was 280 mg kg−1 in Paxillus involutus. There was no clear difference between saprotrophic and mycorrhizal fungi. The majority of species did not accumulate B at more than 0.01–3 mg kg−1, but there were some species that consistently had median concentration values higher than 5–6 mg kg−1 and much higher maximum values, particularly Paxillus involutus, Lactarius necator and several Russula species. Most species increased their B concentration in B fertilised plots, but there were exceptions, particularly Rozites caperatus and Lactarius camphoratus. Boron concentrations did not correlate with those of other elements. In conclusion, B is translocated in the mycelia of most of the studied species. The differences between species may be due to differences in their water use, or carbohydrates used in translocation. It remains to be studied, if B concentrations in mycorrhizas or mycelia in soil are in the same order of magnitude as the larger ones found here, and if this has any effects on the host plants.  相似文献   

18.
Species diversity in mixed forest stands is one of the factors that complicate up-scaling of transpiration from individual trees to stand level, since tree species are architecturally and functionally different. In this study, thermal dissipation probes were used to measure sap flow in five different tree species in a mixed-deciduous mountain forest in South Korea. Easily measurable tree characteristics that could serve to define individual tree water use among the different species were employed to scale up transpiration from single trees to stand level. Tree water use (TWU) was derived from sap flux density (SFD) and sapwood area (SA). Canopy transpiration E was scaled from TWU while canopy conductance (g c) was computed from E and VPD. SFD, TWU and g c were correlated with tree diameter at breast height (DBH) for all the five measured species (SFD: R 2 = 0.21, P = 0.036; TWU: R 2 = 0.83, P < 0.001; g c: R 2 = 0.63, P < 0.001). Maximum stand transpiration (E) during June, before the onset of the Asian monsoon rains, was estimated at 0.97 ± 0.12 mm per day. There was a good (R 2 = 0.94, P < 0.0001) agreement between measured and estimated E using the relationship between TWU and DBH. Our study shows that using functional models that employ converging traits among species could help in estimating water use in mixed forest stands. Compared to SA, DBH is a better scalar for water use of mixed forest stands since it is non-destructive and easily obtainable.  相似文献   

19.
The utility of using fish scales collected during stock assessment exercises to assess the trophic relationships of riverine fishes using their stable isotopes of d13C and d15N was tested using three riverine fish communities in England (Rivers Great Ouse, Ivel and Goyt). In each river, European barbel Barbus barbus was an important species, with other cyprinid species, including chub Squalius cephalus, present. Stable isotope analyses was completed using relatively small sample sizes per species (<11) from fish samples collected in 2001, 2005 and 2006 when up to 5 scales were collected from each fish. The calculation of standard ellipse areas (as a measure of trophic niche size) revealed that relative to other fishes, B. barbus occupied high trophic positions with minimal overlap in their trophic niche with other species, especially S. cephalus. As the analysed fish samples comprised species of various length ranges and as length has strong ontogenetic consequences for fish diet composition, generalized linear models were developed in which length was the covariate; model outputs included length‐adjusted mean δ13C and δ15N for each species. In each fish community, significant differences in δ13C and δ15N were apparent between B. barbus and S. cephalus, but were less apparent between B. barbus and other fishes. Thus, whilst the utility of using fish scales from stock assessments in stable isotope analyses are limited due to the differing length ranges of the sampled fishes, they can be useful in identifying trophic differences between species when methods such as stomach content analyses are unavailable.  相似文献   

20.
Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号