首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Digitonin-permeabilized chromaffin cells secrete catecholamines by exocytosis in response to micromolar Ca2+ concentrations, but lose the ability to secrete in response to Ca2+ as the cells lose soluble proteins through the plasma membrane pores. Such secretory run-down can be retarded by cytosolic fractions, thus providing an assay for proteins potentially involved in the exocytotic process. We have used this assay to investigate the role of N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAPs) in regulated exocytosis. Recombinant alpha- and gamma-SNAP stimulated Ca(2+)-dependent exocytosis, although recombinant NSF was ineffective, despite the fact that NSF and alpha-SNAP leak from the permeabilized cells with similar time courses. However, around one third of cellular NSF was found to be present in a non-cytosolic form and so it is possible that this is sufficient for exocytosis and that exogenous SNAPs stimulate the exocytotic mechanism by acting on the leakage-insensitive NSF. The stimulatory effect of alpha-SNAP displayed a biphasic dose-response curve and was maximal at 20 micrograms/ml. The effect of alpha-SNAP was Ca(2+)- and MgATP-dependent and was inhibited by N-ethylmaleimide and botulinum A neurotoxin, indicating a bona fide action on the exocytotic mechanism. Furthermore, Ca2+ concentrations which trigger catecholamine secretion acted to prevent the leakage of NSF and alpha-SNAP from permeabilized cells. These findings provide functional evidence for a role of SNAPs in regulated exocytosis in chromaffin cells.  相似文献   

2.
Calcium sensors in regulated exocytosis   总被引:8,自引:0,他引:8  
Burgoyne RD  Morgan A 《Cell calcium》1998,24(5-6):367-376
Neurotransmitter release, hormone secretion and a variety of other secretory process are tightly regulated with exocytotic fusion of secretory vesicles being triggered by a rise in cytosolic Ca2+ concentration. A series of proteins that act as part of a conserved core machinery for vesicle docking and fusion throughout the cell have been identified. In regulated exocytosis this core machinery must be controlled by Ca(2+)-sensor proteins that allow rapid activation of the fusion process following elevation of cytosolic Ca2+ concentration. The properties of such Ca2+ sensors are known from physiological studies but their molecular identity remains to be unequivocally established. The multiple Ca(2+)-dependent steps in the exocytotic pathway suggest the likely involvement of several Ca(2+)-binding proteins with distinct properties. Functional evidence for the role of various Ca(2+)-binding proteins and their possible sites of action is accumulating but a definitive identification of the major Ca(2+)-sensor in the final step of Ca(2+)-triggered membrane fusion in different cell types awaits further analysis.  相似文献   

3.
Previous studies have demonstrated roles for vesicle-associated membrane protein 2 (VAMP 2) and VAMP 8 in Ca(2+)-regulated pancreatic acinar cell secretion, however, their coordinated function in the secretory pathway has not been addressed. Here we provide evidence using immunofluorescence microscopy, cell fractionation, and SNARE protein interaction studies that acinar cells contain two distinct populations of zymogen granules (ZGs) expressing either VAMP 2 or VAMP 8. Further, VAMP 8-positive granules also contain the synaptosome-associated protein 29, whereas VAMP 2-expressing granules do not. Analysis of acinar secretion by Texas red-dextran labeling indicated that VAMP 2-positive ZGs mediate the majority of exocytotic events during constitutive secretion and also participate in Ca(2+)-regulated exocytosis, whereas VAMP 8-positive ZGs are more largely involved in Ca(2+)-stimulated secretion. Previously undefined functional roles for VAMP and syntaxin isoforms in acinar secretion were established by introducing truncated constructs of these proteins into permeabilized acini. VAMP 2 and VAMP 8 constructs each attenuated Ca(2+)-stimulated exocytosis by 50%, whereas the neuronal VAMP 1 had no effects. In comparison, the plasma membrane SNAREs syntaxin 2 and syntaxin 4 each inhibited basal exocytosis, but only syntaxin 4 significantly inhibited Ca(2+)-stimulated secretion. Syntaxin 3, which is expressed on ZGs, had no effects. Collectively, these data demonstrate that individual acinar cells express VAMP 2- and VAMP 8-specific populations of ZGs that orchestrate the constitutive and Ca(2+)-regulated secretory pathways.  相似文献   

4.
J H Walent  B W Porter  T F Martin 《Cell》1992,70(5):765-775
The regulated secretory pathway is activated by elevated cytoplasmic Ca2+; however, the components mediating Ca2+ regulation have not been identified. In semi-intact neuroendocrine cells, Ca(2+)-activated secretion is ATP- and cytosol protein-dependent. We have identified a novel brain protein, p145, as a cytosolic factor that reconstitutes Ca(2+)-activated secretion in two neuroendocrine cell types. The protein is a dimer of 145 kd subunits, exhibits Ca(2+)-dependent interaction with a hydrophobic matrix, and binds phospholipid vesicles, suggesting a membrane-associated function. A p145-specific antibody inhibits the reconstitution of Ca(2+)-activated secretion by cytosol, indicating an essential role for p145. The restricted expression of p145 in tissues exhibiting a regulated secretory pathway suggests a key role for this protein in the transduction of Ca2+ signals into vectorial membrane fusion events.  相似文献   

5.
Cytoplasmic Ca2+ is a major regulator of exocytosis in secretory cells; however, the Ca(2+)-dependent mechanisms that trigger secretion have not been elucidated. Protein kinase C (PKC) has been proposed to be an important Ca(2+)-dependent component of this regulation; however, the effects of this enzyme on the exocytotic apparatus have not been identified. We developed a PKC-deficient, semi-intact PC12 cell system in which direct stimulatory effects of purified PKC on Ca(2+)-dependent norepinephrine secretion were studied. The reconstitution of optimal Ca(2+)-activated norepinephrine secretion by semi-intact PC12 cells required the addition of MgATP and cytosolic proteins. PKC-deficient cytosol exhibited reduced reconstituting activity that was fully restored by the addition of purified PKC. The restoration of Ca(2+)-dependent norepinephrine secretion by PKC required the presence of other proteins in the cytosol, in particular, a high molecular weight protein. The high molecular weight protein was identified as p145, a recently characterized 145-kDa brain protein. The addition of PKC enhanced phosphorylation of p145 under conditions of fully reconstituted Ca(2+)-activated norepinephrine secretion. The results indicate that 1) PKC is neither necessary nor sufficient for Ca(2+)-activated secretion, whereas other cytosolic proteins are required; and 2) the stimulation of Ca(2+)-activated secretion by PKC is dependent upon cytosolic proteins such as p145 and may be largely mediated through the phosphorylation of p145.  相似文献   

6.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

7.
Calnuc is an ubiquitous, EF-hand Ca(2+) binding protein found in the cytoplasm where it binds to Galphai3, in the Golgi lumen where it constitutes a Ca(2+) storage pool, and secreted outside the cell. Here we investigated the pathway of secretion of calnuc in AtT20 cells. We found by pulse-chase experiments that calnuc is synthesized in the endoplasmic reticulum, transported to the Golgi where it remains greater than 12 h and undergoes posttranslational modification (O-glycosylation and sulfation) followed by secretion into the culture medium. We examined if calnuc is secreted by the constitutive or regulated secretory pathway in AtT20 cells. By immunofluorescence and immunogold labeling, endogenous calnuc is found in immature secretion granules (ISG) but not mature regulated secretory granules (RSG), whereas overexpressed calnuc-green fluorescent protein (GFP) is found in both ISG and RSG, where it colocalizes with ACTH. Neither calnuc nor calnuc-GFP are released by the regulated secretory pathway, suggesting that endogenous calnuc and calnuc-GFP are progressively removed from ISG and RSG during granule maturation. We conclude that calnuc is secreted via the constitutive-like pathway and represents a useful endogenous marker for this pathway in AtT20 cells. Together, these observations indicate that calnuc has a unique itinerary as it is retained in the Golgi and is then constitutively secreted extracellularly where it may influence cell behavior via its Ca(2+)-binding properties.  相似文献   

8.
Many neural and endocrine cells possess two pathways of secretion: a regulated pathway and a constitutive pathway. Peptide hormones are stored in granules which undergo regulated release whereas other surface-bound proteins are externalized constitutively via a distinct set of vesicles. An important issue is whether proper function of these pathways requires continuous protein synthesis. Wieland et al. (Wieland, F.T., Gleason, M.L., Serafini, T.A., and Rothman, J.E. (1987) Cell 50, 289-300) have shown that a tripeptide containing the sequence Asn-Tyr-Thr can be glycosylated in intracellular compartments and secreted efficiently from Chinese hamster ovary and HepG2 cells, presumably via the constitutive secretory pathway. Secretion is not affected by cycloheximide, suggesting that operation of this pathway does not require components supplied by new protein synthesis. In this report we determined the effects of protein synthesis inhibitor on membrane traffic to the regulated secretory pathway in the mouse pituitary AtT-20 cells. We examined transport of glycosaminoglycan chains since previous studies have shown that these chains enter the regulated secretory pathways and are packaged along with the hormone adrenocorticotropin (ACTH). We found that cycloheximide treatment severely impairs the cell's ability to store and secrete glycosaminoglycan chains by the regulated secretory pathway. In marked contrast, constitutive secretion of glycosaminoglycan chains remains unhindered in the absence of protein synthesis. The differential requirements for protein synthesis indicate differences in the mechanisms for sorting and/or transport of molecules through the constitutive and the regulated secretory pathways. We discuss the possible mechanisms by which protein synthesis may influence trafficking of glycosaminoglycan chains to the regulated secretory pathway.  相似文献   

9.
Exocytotic machinery in neuronal and endocrine tissues is sensitive to changes in intracellular Ca(2+) concentration. Endocrine cell models, that are most frequently used to study the mechanisms of regulated exocytosis, are pancreatic beta cells, adrenal chromaffin cells and pituitary cells. To reliably study the Ca(2+) sensitivity in endocrine cells, accurate and fast determination of Ca(2+) dependence in each tested cell is required. With slow photo-release it is possible to induce ramp-like increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) that leads to a robust exocytotic activity. Slow increases in the [Ca(2+)](i) revealed exocytotic phases with different Ca(2+) sensitivities that have been largely masked in step-like flash photo-release experiments. Strikingly, in the cells of the three described model endocrine tissues (beta, chromaffin and melanotroph cells), distinct Ca(2+) sensitivity 'classes' of secretory vesicles have been observed: a highly Ca(2+)-sensitive, a medium Ca(2+)-sensitive and a low Ca(2+)-sensitive kinetic phase of secretory vesicle exocytosis. We discuss that a physiological modulation of a cellular activity, e.g. by activating cAMP/PKA transduction pathway, can switch the secretory vesicles between Ca(2+) sensitivity classes. This significantly alters late steps in the secretory release of hormones even without utilization of an additional Ca(2+) sensor protein.  相似文献   

10.
Secretion from single pancreatic beta-cells was imaged using a novel technique in which Zn(2+), costored in secretory granules with insulin, was detected by confocal fluorescence microscopy as it was released from the cells. Using this technique, it was observed that secretion from beta-cells was limited to an active region that comprised approximately 50% of the cell perimeter. Using ratiometric imaging with indo-1, localized increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) evoked by membrane depolarization were also observed. Using sequential measurements of secretion and [Ca(2+)](i) at single cells, colocalization of exocytotic release sites and Ca(2+) entry was observed when cells were stimulated by glucose or K(+). Treatment of cells with the Ca(2+) ionophore 4-Br-A23187 induced large Ca(2+) influx around the entire cell circumference. Despite the nonlocalized increase in [Ca(2+)](i), secretion evoked by 4-Br-A23187 was still localized to the same region as that evoked by secretagogues such as glucose. It is concluded that Ca(2+) channels activated by depolarization are localized to specific membrane domains where exocytotic release also occurs; however, localized secretion is not exclusively regulated by localized increases in [Ca(2+)](i), but instead involves spatial localization of other components of the exocytotic machinery.  相似文献   

11.
The means by which calcium is transported into the milk produced by mammary glands is a poorly understood process. One hypothesis is that it occurs during exocytosis of secretory products via the Golgi pathway, consistent with the observation that the SPCA1 Ca2+-ATPase, which is expressed in the Golgi, is induced in lactating mammary tissue. However, massive up-regulation of the PMCA2bw plasma membrane Ca2+-ATPase also occurs during lactation and is more strongly correlated with increases in milk calcium, suggesting that calcium may be secreted directly via this pump. To examine the physiological role of PMCA2bw in lactation we compared lactating PMCA2-null mice to heterozygous and wild-type mice. Relative expression levels of individual milk proteins were unaffected by genotype. However, milk from PMCA2-null mice had 60% less calcium than milk from heterozygous and wild-type mice, the total milk protein concentration was lower, and an indirect measure of milk production (litter weights) suggested that the PMCA2-null mice produce significantly less milk. In contrast, lactose was higher in milk from PMCA2-null mice during early lactation, but by day 12 of lactation there were no differences in milk lactose between the three genotypes. These data demonstrate that the activity of PMCA2bw is required for secretion of much of the calcium in milk. This major secretory function represents a novel biological role for the plasma membrane Ca2+-ATPases, which are generally regarded as premier regulators of intracellular Ca2+.  相似文献   

12.
Mast cells permeabilized by treatment with streptolysin-O in the presence of Ca2+ and GTP-gamma-S can secrete almost 100% of their contained N-acetyl-beta-D-glucosaminidase. If these stimuli are provided to the permeabilized cells after a delay, the response is diminished and the ability of the cells to undergo secretion runs down progressively over a period of about 30 min. This is thought to be due to the loss of key proteins involved in the exocytotic mechanism. Using this effect as the basis of a biological assay, we have isolated a protein from bovine brain cytosol that retards the loss of responsiveness to stimulation by Ca2+ and GTP-gamma-S. Purification of this protein and peptide sequencing have enabled us to identify it as the small GTP-binding protein rac complexed to the guanine nucleotide exchange inhibitor rhoGDI. Both proteins are required to retard the loss of the secretory response, while purified rhoGDI applied alone accelerates the rundown.  相似文献   

13.
Calcium-binding proteins and secretion   总被引:3,自引:0,他引:3  
J.C Hutton 《Cell calcium》1986,7(5-6):339-352
The Ca ion plays a central role in the control of the regulated pathway of exocytotic secretion in eukaryote cells. Most secretagogues either directly or indirectly raise cytosolic free Ca levels which in turn affects granule biogenesis, contractile events, gel/sol transition in intracellular matrix and membrane fusion events occurring at exocytosis. Many of these responses are mediated by Ca-binding proteins among which calmodulin and protein kinase C have received prominent attention. Studies of the nature and inter-relationship of proteins which undergo Ca-dependent association with intracellular membranes in secretory tissue reveal that there may be further Ca-binding proteins in these cells which act as intracellular transducers of the Ca signal during secretion.  相似文献   

14.
HepG2 cells were employed as model system to investigate potential relationships between early protein processing and Ca2+ storage by the endoplasmic reticulum. Ca2+ was required for glycoprotein processing and export by intact cells. The processing and export of alpha 1-antitrypsin and the secretion of complement factor 3, which are glycosylated proteins, were inhibited by the Ca2+ ionophore ionomycin whereas the export of albumin, a non-glycoprotein, was little affected. Ionomycin blocked processing of alpha 1-antitrypsin at the conversion from the high mannose to the complex glycosylated form without affecting ATP or GTP contents. Pre-existing inhibition of intracellular processing of alpha 1-antitrypsin by ionomycin was fully reversible upon removal of the ionophore with fatty acid-free bovine serum albumin. This reversal required Ca2+. After reversal the arrested form of alpha 1-antitrypsin was fully converted to the mature form and exported to the medium. Inhibitions of alpha 1-antitrypsin processing and complement factor 3 secretion by the metalloendoprotease antagonist Cbz-Gly-Phe-NH2 (where Cbz is benzyloxycarbonyl) were strongest at low extracellular Ca2+ but were reduced or prevented by high extracellular Ca2+. Processing and secretion of alpha 1-antitrypsin were reduced upon incubation in low Ca2+ medium. Exposure to dithiothreitol reduced albumin export while affecting alpha 1-antitrypsin export minimally. Suppression of amino acid incorporation into total cellular proteins of HepG2 cells accompanied inhibitions of protein processing by agents depleting sequestered Ca2+ stores or by dithiothreitol. Putative control of rates of translational initiation by the endoplasmic reticulum through linkage to rates of early protein processing is discussed.  相似文献   

15.
The effects of calcium depletion on the proteolytic cleavage and secretion of plasma protein precursors were investigated in primary cultured rat hepatocytes and HepG2 cells. When the cells were incubated with A23187, the calcium-specific ionophore, in a medium lacking CaCl2, precursors of serum albumin and the third and fourth components of complement, C3 and C4, respectively, were found to be released into the medium. The addition of ionomycin or EGTA to the medium inhibited the processing of pro-C3 as well. Blocking the secretory pathway either at the mixed endoplasmic reticulum/Golgi in the presence of brefeldin A or at the endoplasmic reticulum/tubular-vesicular structure at a reduced temperature caused accumulation of pro-C3 within hepatocytes or HepG2 cells, indicating that the cleavage of the precursor occurs at a later stage of the secretory pathway. Once the blockade was released by incubating the cells either in the brefeldin A-free medium or at 37 degrees C, the secretion of plasma proteins resumed, irrespective of the presence of A23187. However, the processing of pro-C3 was almost completely inhibited in the presence of A23187, with only the precursor being released into the medium, implying that a decline in Ca2+ levels within the cell modulates the activity of a Golgi endoprotease responsible for the cleavage of pro-C3. When incubated with isolated Golgi membranes, pro-C3 secreted from Ca(2+)-depleted cells was cleaved in vitro into their subunits in the presence of Ca2+ but not in its absence, pointing to the involvement of a Ca(2+)-dependent Golgi endoprotease in the processing of pro-C3. These results collectively suggest that calcium depletion blocks the proteolytic cleavages of plasma protein precursors presumably by exhausting a Ca2+ pool available to the Ca(2+)-dependent processing enzyme(s) located at the Golgi and/or trans-Golgi network.  相似文献   

16.
Late events in regulated exocytosis   总被引:1,自引:0,他引:1  
To understand the intracellular mechanisms that control exocytosis it is necessary to have access to the cell interior. This is achieved by plasma membrane permeabilisation or by application of patch-pipettes. These conditions permit control over the cytosol composition and also allow leakage of soluble factors that may have roles in the exocytotic mechanism. Different permeabilisation methods allow different extents of leakage and therefore provide complementary data. The exocytotic machinery itself remains intact and can be activated by providing Ca2+ and/or a guanine nucleotide. In some cells there is evidence for the participation of two guanine nucleotide-binding proteins (GP and GE), as well as a Ca(2+)-binding protein. In others Ca2+ is the only requirement. In a number of cell types, ATP is not required for the late steps in the secretory pathway.  相似文献   

17.
Constitutive and basal secretion from the endocrine cell line, AtT-20   总被引:14,自引:4,他引:10       下载免费PDF全文
A variant of the ACTH-secreting pituitary cell line, AtT-20, has been isolated that does not make ACTH, sulfated proteins characteristic of the regulated secretory pathway, or dense-core secretory granules but retains constitutive secretion. Unlike wild type AtT-20 cells, the variant cannot store or release on stimulation, free glycosaminoglycan (GAG) chains. In addition, the variant cells cannot store trypsinogen or proinsulin, proteins that are targeted to dense core secretory granules in wild type cells. The regulated pathway could not be restored by transfecting with DNA encoding trypsinogen, a soluble regulated secretory protein targeted to secretory granules. A comparison of secretion from variant and wild type cells allows a distinction to be made between constitutive secretion and basal secretion, the spontaneous release of regulated proteins that occurs in the absence of stimulation.  相似文献   

18.
In the cultured human hepatoma HepG2, Ca2+ ionophores block secretion of different secretary proteins to different extents, alpha 1-antitrypsin secretion being more sensitive to A23187 and ionomycin than is alpha 1-antichymotrypsin, and albumin secretion the least of the three proteins studied. As judged by subcellular fractionation experiments and by treatment of pulse chase labeled protein with endoglycosidase H, A23187 and ionomycin cause newly made secretory proteins to remain within the rough endoplasmic reticulum (ER). Experiments in which A23187 is added at different times during a pulse or chase show that secretion of newly made alpha 1-antitrypsin becomes resistant to the ionophore, on average, 15 min after synthesis; this is about 20 min before it reaches the trans-Golgi, and while it is still within the rough ER. We speculate that a high concentration of Ca2+ within the ER may be essential for certain secretory proteins to fold properly, that folding is inhibited when ER Ca2+ levels are lowered by ionophore treatment, and that unfolded proteins, particularly alpha 1-antitrypsin, cannot exit the rough ER. Treatment of murine 3T3 fibroblasts or human hepatoma HepG2 cells with the Ca2+ ionophores A23187 or ionomycin also induces a severalfold accumulation of the ER lumenal protein Bip (Grp78). These findings disagree with a recent report that Ca2+ ionophores cause secretion of Bip and other resident ER proteins, but is consistent with other reports that A23187 causes accumulation of mRNAs for Bip and other ER lumenal proteins.  相似文献   

19.
Calcium (Ca) ionophores trigger cortical granule exocytosis in progesterone-matured Xenopus oocytes (eggs), but not in immature oocytes. Prior work suggested that this secretory transition involved a Ca-dependent isoform of protein kinase C (PKC). To address this possibility, we treated eggs with several different inhibitors of Ca-dependent PKCs. Although these agents (eg., staurosporine, Ro31-8220) completely blocked cortical granule exocytosis that is triggered in eggs by phorbol esters, they had no impact on ionomycin-evoked secretion of cortical granule lectin. These data suggest that Ca-dependent PKCs do not mediate secretory triggering in eggs. Instead, further investigation revealed that protein synthesis (but not RNA synthesis) was required for eggs to secrete in response to ionomycin. Moreover, we observed that when oocytes were matured by injection of maturation promoting factor (MPF), they failed to secrete in response to ionomycin. Collectively, these results suggest that the progesterone-dependent maturation pathway induces these cells either to synthesize de novo, a protein that mediates Ca-dependent secretory triggering, or that intrinsic Ca-sensing machinery is modified in a protein-synthesis-dependent fashion. Initial efforts to distinguish between these possibilities (using Ca overlay, pharmacological and immunoblot strategies) revealed that such Ca-binding proteins as calmodulin, synaptotagmin1, CAPS, rabphilin-3A and calcineurin were unlikely to transduce the secretory effects of ionomycin in eggs. Thus, the cortical reaction in these cells may rely on a novel mechanism for initiating Ca-dependent exocytosis.  相似文献   

20.
《The Journal of cell biology》1996,133(6):1217-1236
Annexin II is a Ca(2+)-dependent membrane-binding protein present in a wide variety of cells and tissues. Within cells, annexin II is found either as a 36-kD monomer (p36) or as a heterotetrameric complex (p90) coupled with the S-100-related protein, p11. Annexin II has been suggested to be involved in exocytosis as it can restore the secretory responsiveness of permeabilized chromaffin cells. By quantitative confocal immunofluorescence, immunoreplica analysis and immunoprecipitation, we show here the translocation of p36 from the cytosol to a subplasmalemmal Triton X-100 insoluble fraction in chromaffin cells following nicotinic stimulation. A synthetic peptide corresponding to the NH2-terminal domain of p36 which contains the phosphorylation sites was microinjected into individual chromaffin cells and catecholamine secretion was monitored by amperometry. This peptide blocked completely the nicotine-induced recruitment of p36 to the cell periphery and strongly inhibited exocytosis evoked by either nicotine or high K+. The light chain of annexin II, p11, was selectively expressed by adrenergic chromaffin cells, and was only present in the subplasmalemmal Triton X-100 insoluble protein fraction of both resting and stimulated cells. p11 can modify the Ca(2+)- and/or the phospholipid-binding properties of p36. We found that loss Ca2+ was required to stimulate the translocation of p36 and to trigger exocytosis in adrenergic chromaffin cells. Our findings suggest that the translocation of p36 to the subplasmalemmal region is an essential event in regulated exocytosis and support the idea that the presence of p11 in adrenergic cells may confer a higher Ca2+ affinity to the exocytotic pathway in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号