首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
Previous kinetics studies with homopolymer ferritins (bullfrog M-chain, human H-chain and Escherichia coli bacterial ferritins) have established that a mu-1,2-peroxo diferric intermediate is formed during Fe(II) oxidation by O2 at the ferroxidase site of the protein. The present study was undertaken to determine whether such an intermediate is formed also during iron oxidation in horse spleen ferritin (HoSF), a naturally occurring heteropolymer ferritin of H and L-subunits (approximately 3.3 H-chains/HoSF), and to assess its role in the formation of the mineral core. Multi-wavelength stopped-flow spectrophotometry of the oxidative deposition of iron in HoSF demonstrated that a transient peroxo complex (lambda(max) approximately 650 nm) is produced in this protein as for other ferritins. The peroxo complex in HoSF is formed about fourfold slower than in human H-chain (HuHF) and decays more slowly (approximately threefold) as well, at an iron level of two Fe(II)/H-chain. However, as found for HuHF, a second intermediate is formed in HoSF as a decay product of the peroxo complex. Only one-third of the expected peroxo complex forms at the ferroxidase centers of HoSF when two Fe(II)/H-subunits are added to the protein, dropping to only approximately 14% when 20 Fe(II)/H-chain are added, indicating a declining role of the peroxo complex in iron deposition. In contrast to HuHF, HoSF does not enzymatically regenerate the observable peroxo complex. The kinetics of mineralization in HoSF are modeled satisfactorily by a mechanism in which the ferroxidase site rapidly produces an incipient core from a single turnover of iron, upon which subsequent Fe(II) is oxidized autocatalytically to build the Fe(O)OH(s) mineral core. This model supports a role for the L-chain in iron mineralization and helps to explain the widespread occurrence of heteropolymer ferritins in tissues of vertebrates.  相似文献   

2.
In ferritins and bacterioferritins iron is stored as an inorganic complex within a protein shell. The composition and properties of this complex are surprisingly variable. Factors that may lead to such variability are discussed.  相似文献   

3.
The iron redox and hydrolysis chemistry of the ferritins   总被引:2,自引:0,他引:2  

Background

Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization.

Scope of review

Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals.

General Significance

Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H2O2 over O2 as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes.

Major conclusions

The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.  相似文献   

4.
Human ferritins sequester and store iron as a stable FeOOH((s)) mineral core within a protein shell assembled from 24 subunits of two types, H and L. Core mineralization in recombinant H- and L-subunit homopolymer and heteropolymer ferritins and several site-directed H-subunit variants was investigated to determine the iron oxidation/hydrolysis chemistry as a function of iron flux into the protein. Stopped-flow absorption spectrometry, UV spectrometry, and electrode oximetry revealed that the mineral core forms by at least three pathways, not two as previously thought. They correspond to the ferroxidase, mineral surface, and the Fe(II) + H2O2 detoxification reactions, respectively: [see reactions]. The H-subunit catalyzed ferroxidase reaction 1 occurs at all levels of iron loading of the protein but decreases with increasing iron added (48-800 Fe(II)/protein). Reaction 2 is the dominant reaction at 800 Fe(II)/protein, whereas reaction 3 occurs largely at intermediate iron loadings of 100-500 Fe(II)/protein. Some of the H2O2 produced in reaction 1 is consumed in the detoxification reaction 3; the 2/1 Fe(II)/H2O2 stoichiometry of reaction 3 minimizes hydroxyl radical production during mineralization. Human L-chain ferritin and H-chain variants lacking functional nucleation and/or ferroxidase sites deposit their iron largely through the mineral surface reaction 2. H2O2 is shown to be an intermediate product of dioxygen reduction in L-chain as well as in H-chain and H-chain variant ferritins.  相似文献   

5.
BackgroundThe mechanism of iron oxidation and core formation in homopolymeric H-type ferritins has been extensively studied in-vitro, so has the reductive mobilization of iron from the inorganic iron(III) core. However, neither process is well-understood in-vivo despite recent scientific advances.Scope of reviewHere, we provide a summary of our current understanding of iron mineralization and iron core dissolution in homopolymeric H-type ferritins and highlight areas of interest and further studies that could answer some of the outstanding questions of iron metabolism.Major conclusionsThe overall iron oxidation mechanism in homopolymeric H-type ferritins from vertebrates (i.e. human H and frog M ferritins) is similar, despite nuances in the individual oxidation steps due to differences in the iron ligand environments inside the three fold channels, and at the dinuclear ferroxidase centers. Ferrous cations enter the protein shell through hydrophilic channels, followed by their rapid oxidization at di‑iron centers. Hydrogen peroxide produced during iron oxidation can react with additional iron(II) at ferroxidase centers, or at separate sites, or possibly on the surface of the mineral core. In-vitro ferritin iron mobilization can be achieved using a variety of reducing agents, but in-vivo iron retrieval may occur through a variety of processes, including proteolytic degradation, auxiliary iron mobilization mechanisms involving physiological reducing agents, and/or oxidoreductases.General significanceThis review provides important insights into the mechanisms of iron oxidation and mobilization in homopolymeric H-type ferritins, and different strategies in maintaining iron homeostasis.  相似文献   

6.
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores, consider how iron might be released from ferritins, and examine in detail how three selected ferritins oxidise Fe2+ to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins.  相似文献   

7.
8.
Mineralization in Ferritin: An Efficient Means of Iron Storage   总被引:22,自引:0,他引:22  
Ferritins are a class of iron storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. Iron is stored within the protein shell of ferritin as a hydrous ferric oxide nanoparticle with a structure similar to that of the mineral "ferrihydrite." The eight hydrophilic channels that traverse the protein shell are thought to be the primary avenues by which iron gains entry to the interior of eukaryotic ferritins. Twenty-four subunits constitute the protein shell and, in mammalian ferritins, are of two types, H and L, which have complementary functions in iron uptake. The H chain contains a dinuclear ferroxidase site that is located within the four-helix bundle of the subunit; it catalyzes the oxidation of ferrous iron by O(2), producing H(2)O(2). The L subunit lacks this site but contains additional glutamate residues on the interior surface of the protein shell which produce a microenvironment that facilitates mineralization and the turnover of iron(III) at the H subunit ferroxidase site. Recent spectroscopic studies have shown that a di-Fe(III) peroxo intermediate is produced at the ferroxidase site followed by formation of a mu-oxobridged dimer, which then fragments and migrates to the nucleation sites to form incipient mineral core species. Once sufficient core has developed, iron oxidation and mineralization occur primarily on the surface of the growing crystallite, thus minimizing the production of potentially harmful H(2)O(2).  相似文献   

9.
M J Yablonski  E C Theil 《Biochemistry》1992,31(40):9680-9684
Ferritin is a large protein, highly conserved among higher eukaryotes, which reversibly stores iron as a mineral of hydrated ferric oxide. Twenty-four polypeptides assemble to form a hollow coat with the mineral inside. Multiple steps occur in iron core formation. First, Fe2+ enters the protein. Then, several alternate paths may be followed which include oxidation at site(s) on the protein, oxidation on the core surface, and mineralization. Sequence variations occur among ferritin subunits which are classified as H or L; Fe2+ oxidation at sites on the protein appears to be H-subunit-specific or protein-specific. Other steps of ferritin core formation are likely to involve conserved sites in ferritins. Since incorporation of Fe2+ into the protein must precede any of the other steps in core formation, it may involve sites conserved among the various ferritin proteins. In this study, accessibility of Fe2+ to 1,10-phenanthroline, previously shown to be inaccessible to Fe2+ inside ferritin, was used to measure Fe2+ incorporation in two different ferritins under various conditions. Horse spleen ferritin (L/H = 10-20:1) and sheep spleen ferritin (L/H = 1:1.6) were compared. The results showed that iron incorporation measured as inaccessibility of Fe2+ to 1,10-phenanthroline increased with pH. The effect was the same for both proteins, indicating that a step in iron core formation common among ferritins was being measured. Conserved sites previously proposed for different steps in ferritin core formation are at the interfaces of pairs and trios of subunits. Dinitrophenol cross-links, which modify pairs of subunits and affect iron oxidation, had no effect on Fe2+ incorporation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The ability of ferritins with differing iron contents to catalyze the oxidation of luminol by hydrogen peroxide was studied. The least efficient catalysts were iron-rich ferritins, and the most potent were those with iron to protein ratios of less than 0.1.  相似文献   

11.
12.
Mammalian ferritins are predominantly heteropolymeric species consisting of 24 structurally similar, but functionally different subunit types, named H and L, that co-assemble in different proportions. Despite their discovery more than 8 decades ago, recombinant human heteropolymer ferritins have never been synthesized, owing to the lack of a good expression system. Here, we describe for the first time a unique approach that uses a novel plasmid design that enables the synthesis of these complex ferritin nanostructures. Our study reveals an original system that can be easily tuned by altering the concentrations of two inducers, allowing the synthesis of a full spectrum of heteropolymer ferritins, from H-rich to L-rich ferritins and any combinations in-between (isoferritins). The H to L subunit composition of purified ferritin heteropolymers was analyzed by SDS-PAGE and capillary gel electrophoresis, and their iron handling properties characterized by light absorption spectroscopy. Our novel approach allows future investigations of the structural and functional differences of isoferritin populations, which remain largely obscure. This is particularly exciting since a change in the ferritin H- to L-subunit ratio could potentially lead to new iron core morphologies for various applications in bio-nanotechnologies.  相似文献   

13.
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.  相似文献   

14.
Soybean seed ferritin is essential for human iron supplementation and iron deficiency anemia prevention because it contains abundant bioavailable iron and is frequently consumed in the human diet. However, it is poorly understood in regards its several properties, such as iron mineralization, subunit assembly, and protein folding. To address these issues, we decided to prepare the soybean seed ferritin complex via a recombinant DNA approach. In this paper, we report a rapid and simple Escherichia coli expression system to produce the soybean seed ferritin complex. In this system, two subunits of soybean seed ferritin, H-2 and H-1, were encoded in a single plasmid, and optimal expression was achieved by additionally coexpressing a team of molecular chaperones, trigger factor and GroEL-GroES. The His-tagged ferritin complex was purified by Ni2+ affinity chromatography, and an intact ferritin complex was obtained following His-tagged enterokinase (His-EK) digestion. The purified ferritin complex synthesized in E. coli demonstrated some reported features of its native counterpart from soybean seed, including an apparent molecular weight, multimeric assembly, and iron uptake activity. We believe that the strategy described in this paper may be of general utility in producing other recombinant plant ferritins built up from two types of subunits.  相似文献   

15.
16.
Mammalian ferritins are predominantly heteropolymeric species consisting of 2 structurally similar, but functionally and genetically distinct subunit types, called H (Heavy) and L (Light). The two subunits co-assemble in different H and L ratios to form 24-mer shell-like protein nanocages where thousands of iron atoms can be mineralized inside a hollow cavity. Here, we use differential scanning calorimetry (DSC) to study ferritin stability and understand how various combinations of H and L subunits confer aspects of protein structure–function relationships. Using a recently engineered plasmid design that enables the synthesis of complex ferritin nanostructures with specific H to L subunit ratios, we show that homopolymer L and heteropolymer L-rich ferritins have a remarkable hyperthermostability (Tm = 115 ± 1°C) compared to their H-ferritin homologues (Tm = 93 ± 1°C). Our data reveal a significant linear correlation between protein thermal stability and the number of L subunits present on the ferritin shell. A strong and unexpected iron-induced protein thermal destabilization effect (ΔTm up to 20°C) is observed. To our knowledge, this is the first report of recombinant human homo- and hetero-polymer ferritins that exhibit surprisingly high dissociation temperatures, the highest among all known ferritin species, including many known hyperthermophilic proteins and enzymes. This extreme thermostability of our L and L-rich ferritins may have great potential for biotechnological applications.  相似文献   

17.
18.
The structure and crystal chemical properties of iron cores of reconstituted recombinant human ferritins and their site-directed variants have been studied by transmission electron microscopy and electron diffraction. The kinetics of Fe uptake have been compared spectrophotometrically. Recombinant L and H-chain ferritins, and recombinant H-chain variants incorporating modifications in the threefold (Asp131----His or Glu134----Ala) and fourfold (Leu169----Arg) channels, at the partially buried ferroxidase sites (Glu62,His65----Lys,Gly), a putative nucleation site on the inner surface (Glu61,Glu64,Glu67----Ala), and both the ferroxidase and nucleation sites (Glu62,His65----Lys,Gly and Glu61,Glu64,Glu67----Ala), were investigated. An additional H-chain variant, incorporating substitution of the last ten C-terminal residues for those of the L-chain protein, was also studied. Most of the proteins assimilated iron to give discrete electron-dense cores of the Fe(III) hydrated oxide, ferrihydrite (Fe2O3.nH2O). No differences were observed for variants modified in the three- or fourfold channels compared with the unmodified H-chain ferritin. The recombinant L-chain ferritin and H-chain variant depleted of the ferroxidase site, however, showed markedly reduced uptake kinetics and comprised cores of increased diameter and regularity. Depletion of the inner surface Glu residues, whilst maintaining the ferroxidase site, resulted in a partially reduced rate of Fe uptake and iron cores of wider particle size distribution. Modification of both ferroxidase and inner surface Glu residues resulted in complete inhibition of iron uptake and deposition. No cores were observed by electron microscopy although negative staining showed that the protein shell was intact. The general requirement of an appropriate spatial charge density across the cavity surface rather than specific amino acid residues could explain how, in spite of an almost complete lack of identity between the amino acid sequences of bacterioferritin and mammalian ferritins, ferrihydrite is deposited within the cavity of both proteins under similar reconstitution conditions.  相似文献   

19.
Ferritin has a high capacity as an iron store, incorporating some 4500 iron atoms as a microcrystalline ferric oxide hydrate. Starting from apoferritin, or ferritin of low iron content, Fe2+ and an oxidizing agent, the uptake of iron can be recorded spectrophotometrically. Progress curves were obtained and the reconstituted ferritin was shown by several physical methods to be similar to natural ferritin. The progress curves of iron uptake by apoferritin are sigmoidal; those for ferritins of low iron content are hyperbolic. The rate of iron uptake is dependent on the amount of iron already present in the molecule. The distribution of iron contents among reconstituted ferritin molecules is inhomogeneous. These findings are interpreted in terms of a crystal growth model. The surface area of the crystallites forming inside the protein increases until the molecule is half full, and then declines. This surface controls the rate at which new material is deposited. The experimental results can best be accounted for by a two-stage mechanism, an initial slow `nucleation' stage, which is apparently zero order with respect to [Fe2+], followed by a more rapid `growth' stage. The rate of Fe2+ oxidation is increased in the presence of apoferritin as compared with controls. Ferritin can therefore be regarded as an enzyme to which the product remains firmly attached. The protein appears to increase the rate of `nucleation'. The apparent zero order of this stage suggests the presence of binding sites on the protein, which are saturated with respect to Fe2+. These sites are presumed also to be oxidation sites. The oxidation and subsequent formation of the ferric oxide hydrate may proceed according to one of three alternative models.  相似文献   

20.
A novel ferritin type specifically targeted to mitochondria has been recently found in human and mouse. It is structurally and functionally similar to the cytosolic ferritins, well-characterized molecules found in most living systems which are designed to store and detoxify cellular iron. Cytosolic ferritins in mammals are ubiquitous while mitochondrial ferritin expression is restricted mainly to the testis, neuronal cells and islets of Langherans. In addition, it is abundant in the iron-loaded mitochondria of erythroblasts of patients with sideroblastic anaemia. The characterization of recombinant and transfected mitochondrial ferritin indicated that this protein has a role in protecting mitochondria from iron-induced damage. These data suggest that it is an interesting tool to study the iron metabolism in this organelle. In addition, it may be useful for the diagnosis of myelodysplastic syndromes and in protecting mitochondria from the toxic effects of excess iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号