首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene synthesis is a convenient tool that is widely used to make genes for a variety of purposes. All current protocols essentially take inside-out approaches to assemble complete genes using DNA oligonucleotides or intermediate fragments. Here we present an efficient method that integrates gene synthesis and cloning into one step. Our method, which is evolved from QuikChange mutagenesis, can modify, extend, or even de novo synthesize relatively large genes. The genes are inserted directly into vectors without ligations or subcloning. We de novo synthesized a 600-bp gene through multiple steps of polymerase chain reaction (PCR) directly into a bacterial expression vector. This outside-in gene synthesis method is called Quikgene. Furthermore, we have defined an overlap region of a minimum of nine nucleotides in insertion primers that is sufficient enough to circularize PCR products for efficient transformation, allowing one to significantly reduce the lengths of primers. Taken together, our protocol greatly extends the current length limit for QuikChange insertion. More importantly, it combines gene synthesis and cloning into one step. It has potential applications for high-throughput structural genomics.  相似文献   

2.
3.
A modification of PCR-mediated gene synthesis strategy is introduced. This modification enables the synthesis of a gene from oligonucleotides comprising only one of the two strands. Bridging oligonucleotides (approximately 20-mers in length) complementary to the junctions of template strand oligonucleotides and two outer primers are also needed for PCR. A two-step PCR containing a first step of 10 cycles, followed by a second step of 20 cycles, differing only in the annealing conditions was used. A single-step PCR combining the two different cycle conditions could also be used successfully. Optimal conditions for gene synthesis (and amplification) are described. Human and porcine colipase genes (297 and 309 bp, respectively) have been successfully synthesized, cloned into the Invitrogen TA cloning vector and sequenced. There was absolutely no error in the clones that were sequenced.  相似文献   

4.
We describe a rapid and efficient microscale method for in vitro site-directed mutagenesis by gene synthesis. Mutants are constructed by "shot-gun ligation" of overlapping synthetic oligonucleotides yielding double stranded synthetic DNA of more than 120 nucleotides in length. The terminal oligonucleotides of the DNA segment to be synthesized are designed to create sticky ends complementary to unique restriction sites of a polylinker present in an M13 vector. The oligonucleotides are hybridized and ligated to the M13 vector without any purification of the synthetic DNA segment. After cloning, about half of the progeny from such shot-gun ligations contained the predicted sequence demonstrating the efficacy of this method for gene synthesis and its potential for the extensive mutational analysis of genes.  相似文献   

5.
A 1761 base pairs long artificial gene coding for human serum albumin (HSA) has been prepared by a newly developed synthetic approach, resulting in the largest synthetic gene so far described. Oligonucleotides corresponding to only one strand of the HSA gene were prepared by chemical synthesis, while the complementary strand was obtained by a combination of enzymatic and cloning steps. 24 synthetic, 69-85 nucleotides long oligonucleotides covering the major part of the HSA gene (41-1761 nucleotides) were used as building blocks. Generally, four groups of 6-6 such oligonucleotides were successively cloned in pUC19 Escherichia coli vector to obtain about quarters of the gene as large fragments. Joining of these four fragments resulted in a cloned DNA coding for the 13-585 amino acid region of HSA, which was further supplemented with a double-stranded linker sequence coding for the amino terminal 12 amino acids. The completed structural gene composed of frequently used codons in the highly expressed yeast genes was then supplied with yeast regulatory sequences and the HSA expression cassette so obtained was inserted into an Escherichia coli-Saccharomyces cerevisiae shuttle vector. This vector was shown to direct the expression in Saccharomyces cerevisiae of correctly processed, mature HSA which was recognized by antiserum to HSA, and possessed the correct N-terminal amino acid sequence.  相似文献   

6.
林继伟  张晓东  曹雪雁  胡钧 《遗传》2007,29(6):765-770
基因合成正日益成为基因获取的一种有效手段。两种常用的基因合成方法是基于PCR的基因合成(P法)和基于连接酶的基因合成(L法)。这两种方法都不是独立于所合成基因的序列内容的。文章首次提出了一种新的基因合成策略—等温单向生长法(Isothermal Unidirectional Elongation Method, IUEM), 在3种酶的作用下, DNA链在等温状态下单向串行延伸, 直到获得目标基因。由于引物设计成特殊的发夹结构, 该方法可以做到合成过程独立于或部分独立于目标基因的序列内容。本文探索了该策略的实验可行性, 检测了影响基因合成的各种因素, 并利用该方法成功地合成了一段254 bp和一段300 bp的DNA序列。  相似文献   

7.
Abstract

The design, chemical synthesis and cloning of a gene for salmon calcitonin I-gly(33) consisting of two long oligodeoxyribonucleotides (109- and 117-mer) are described. Synthesizing both of the oligonucleotides on CPG supports with pore sizes of 500 or 1000 A respectively, a superior performance of the 1000 A material was observed.  相似文献   

8.
High-cost of oligonucleotides is one of the major problems to low-cost gene synthesis. Although DNA oligonucleotides from cleavable DNA microchips has been adopted for the low-cost gene synthesis, construction of DNA molecules larger than 1 kb has been largely hampered due to the difficulties of DNA assembly associated with the negligible quantity of chip oligonucleotides. Here we report a hierarchical method for the synthesis of large genes using oligonucleotides from programmable DNA microchips. Using this hierarchical method, we successfully synthesized 1056 bp Dpo4 and 2325 bp Pfu DNA polymerase genes as models. This hierarchical strategy can be further expanded for the syntheses of multiple large genes in a scalable manner.  相似文献   

9.
Abstract

The construction of genes as exemplified for a gene encoding salmon calcitonin-gly(33) from only two long synthetic oligonucleotides (coding/noncoding strand) is described. The type of solid support used in oligonucleotide preparation strongly influences synthesis yields and mutation rates in the cloning of the synthetic DNA.  相似文献   

10.
A method is described for cloning synthetic oligodeoxynucleotides, which can theoretically be of any length. The method requires only a single oligodeoxynucleotide strand and a vector with two unique restriction sites, one of which is for an enzyme that generates 3′ protruding ends. A mixture of unpurified oligonucleotides containing a wild-type genetic regulatory sequence of the Escherichia coli gnd gene and two mutations of it was cloned into a plasmid carrying a gnd-lacZ protein fusion. Individual cloned oligonucleotides were readily identified by direct DNA sequencing of plasmid templates. The method is rapid, efficient, and has application to gene synthesis and site-directed mutagenesis.  相似文献   

11.
During the synthesis of oligonucleotides by the standard phosphoramidite method using 2'-deoxycytidine- derivatized solid support, a side reaction was observed that gave rise to the formation of high molecular weight N-branched oligomers having two identical chains linked to the 3'-terminal 2'-deoxycytidine.Postsynthesis treatment with neat triethylamine trihydrofluoride selectively cleaved the phosphoramidate linkage and converted the N-branched oligomers back to the expected oligonucleotides.  相似文献   

12.
A new method for the synthesis of a structural gene.   总被引:3,自引:2,他引:1       下载免费PDF全文
A novel method of synthesizing a structural gene or gene fragment, consisting of the first synthesis of a single-stranded DNA (ssDNA), has been developed. As a preliminary test of this method, four synthetic genes or gene fragments have been synthesized. The first one with 396 base pairs (b.p.) codes for the mature rbcS from wheat, the next two with 370 and 342 b.p. respectively, for two half molecules of a gene for trichosanthin and the last one with 315 b.p. for the N-terminal 1-102 residues of human prourokinase. In all these syntheses, a plus-stranded DNA of the target gene was generally assembled by a stepwise or one step T4 DNA ligase reaction of six oligonucleotides (A, *pB, *pC, *pD, *pE and *pF) of 30-71 nucleotides long in the presence of two terminal complementary oligonucleotides (Ab' and eF') and three short inter-fragment complementary oligonucleotides (bc, cd and de). After purification, the synthetic ssDNA was inserted into a cloning vector, pWR13. The resulting product was directly used to transform a host cell. The structure of the cloned synthetic gene was confirmed by DNA sequence analysis.  相似文献   

13.
Large DNA constructs of arbitrary sequences can currently be assembled with relative ease by joining short synthetic oligodeoxynucleotides (oligonucleotides). The ability to mass produce these synthetic genes readily will have a significant impact on research in biology and medicine. Presently, high-throughput gene synthesis is unlikely, due to the limits of oligonucleotide synthesis. We describe a microfluidic PicoArray method for the simultaneous synthesis and purification of oligonucleotides that are designed for multiplex gene synthesis. Given the demand for highly pure oligonucleotides in gene synthesis processes, we used a model to improve key reaction steps in DNA synthesis. The oligonucleotides obtained were successfully used in ligation under thermal cycling conditions to generate DNA constructs of several hundreds of base pairs. Protein expression using the gene thus synthesized was demonstrated. We used a DNA assembly strategy, i.e. ligation followed by fusion PCR, and achieved effective assembling of up to 10 kb DNA constructs. These results illustrate the potential of microfluidics-based ultra-fast oligonucleotide parallel synthesis as an enabling tool for modern synthetic biology applications, such as the construction of genome-scale molecular clones and cell-free large scale protein expression.  相似文献   

14.
C Boiziau  J J Toulmé 《Biochimie》1991,73(11):1403-1408
We have investigated the behaviour of antisense oligonucleotides in rabbit reticulocytes. Both backbone-modified oligomers (methyl-phosphonate and phosphorothioate analogues), anomers of nucleotide units (alpha) and oligonucleotides linked to various ligands (intercalator, polylysine, dodecanol) were tested with respect to cellular uptake and inhibition of protein synthesis. Oligonucleotides added at an external concentration of 10 microM slowly entered the cell up to a concentration of a few hundred nanomolars. A large fraction of phosphorothioate analogues was found to be associated with the membrane. alpha-, methylphosphonate and phosphorothioate analogues remained intact during the incubation with reticulocytes although the latter were partly dephosphorylated. Antisense oligonucleotides were targeted against three different sites of the rabbit beta-globin mRNA: the 5' end of the message, the initiator AUG or the coding sequence. No specific effect on beta-globin synthesis was observed with any of the investigated compounds.  相似文献   

15.
16.
Herein we present a simple, universal, efficient gene synthesis method based on sequential overlap extension polymerase chain reactions (OE-PCRs). This method involves four key steps: (i) the design of paired complementary 54-mer oligonucleotides with 18 bp overlaps, (ii) the utilisation of sequential OE-PCR to synthesise full-length genes, (iii) the cloning and sequencing of four positive T-clones of the synthesised genes and (iv) the resynthesis of target genes by OE-PCR with correct templates. Mispriming and secondary structure were found to be the principal obstacles preventing successful gene synthesis and were easily identified and solved in this method. Compensating for the disadvantages of being laborious and time-consuming, this method has many attractive advantages, such as the ability to guarantee successful gene synthesis in most cases and good allowance for Taq polymerase, oligonucleotides, PCR conditions and a high error rate. Thus, this method provides an alternative tool for individual gene synthesis without strict needs of the high-specialised experience.  相似文献   

17.
In order to increase the efficiency of use of automated DNA synthesizers (i.e. the number of oligomers prepared per day), we have devised and prepared novel phosphoramidite reagents that contain a linking group which, while stable under the normal synthesis conditions, is cleaved under basic conditions. When one of these linkers is introduced at the desired position in the synthesis of an oligonucleotide, subsequent detritylation enables the synthesis of a second oligonucleotides sequence upon the first. During deprotection of the oligonucleotide with ammonium hydroxide, the chain is cleaved at either side of the points of introduction of the novel reagent, generating two oligonucleotides free in solution. These reagents are of particular use in applications where oligomers are used in pairs (such as PCR, chemical synthesis of genes etc.) and means that an automated synthesis facility can be used more efficiently, without the need for operator intervention, after the working day is over.  相似文献   

18.
Oligodeoxynucleotides with a phosphorus atom in which one of the non-bridging oxygen atoms is substituted by selenium were prepared and investigated with respect to their antisense properties. A general synthesis of phosphoroselenoate analogs of oligonucleotides is described using potassium selenocyanate as the selenium donor. The compounds, characterized by 31P NMR, were shown to decompose to phosphate with a half-life of ca. 30 days. Melting temperatures of duplexes between poly(rA) or poly(rI) with oligo(dT) and oligo(dC), respectively, indicate diminished hybridization capability of phosphoroselenoate oligomers relative to both the unmodified phosphodiester oligomers and the phosphorothioate congeners. A phosphoroselenoate 17-mer is a sequence specific inhibitor of rabbit beta-globin synthesis in wheat germ extract and in injected Xenopus oocytes. In contrast phosphoroselenoate analogs are potent non-sequence specific inhibitors in rabbit reticulocyte lysate. In vitro HIV assays were carried out on a phosphoroselenoate sequence and compared with a phosphorothioate analogue that has previously been shown to exhibit anti-HIV activity (Matsukura et al., Proc. Natl. Acad. Sci. (1987) 84, 7706-7710). The phosphoroselenoate was somewhat less active, and was much more toxic to the cells.  相似文献   

19.
Use of synthetic oligonucleotides in gene isolation and manipulation   总被引:1,自引:0,他引:1  
Great progress has occurred in the techniques of synthesis of DNA molecules of defined sequences in terms of speed, length of the obtained oligonucleotides, and automation of the processes. Corresponding progress also occurred in the ways of using synthetic DNA in molecular biology and recombinant DNA research. Screening of cloned DNA sequence banks with long, unique oligonucleotides, provided a new approach to isolate the genes for proteins which are present in very small quantity. This technique can present considerable advantages over the more classical use of mixtures of oligonucleotides, in reducing the number of potentially positive clones on a primary screen, and enabling cloning with a minimum of amino acid sequence data. Synthetic oligonucleotides also provide the basis of a set of techniques for site-directed mutagenesis of DNA sequences. This allows the possibility of engineering the structure of particular proteins, and the properties of new variants can be tested by expressing the protein in a heterologous host. An example of this approach is the production of variants of human alpha 1-antitrypsin. A variant where valine replaces the methionine at the active site is equally active as an antielastase, but no longer susceptible to oxidative inactivation. A second variant, where arginine replaces the methionine, now functions as an antithrombin, but no longer inhibits elastase. Total gene synthesis is now feasible for larger and larger genes, and some of the recent strategies of whole gene synthesis are presented.  相似文献   

20.
Abstract

The emergence of antisense and antigene oligonucleotides as potential sequenceselective inhibitors of gene expression is evidenced by the growing number of ongoing clinicals trials against a variety of diseases. First generation antisense therapeutics utilize a uniformly modified oligodeoxyribonucleotide phosphorothioate where one non-bridging oxygen atom is formally replaced by sulfur, because natural DNA is unstable towards extra- and intracellular enzymes. Phosphoramidite chemistry has been widely used for the synthesis of phosphorothioate oligonucleotides because of its potential for automation, high coupling efficiency, ease of site-specific thioate linkage incorporation, and ready scalability. The large scale solid-supported synthesis of phosphorothioates is presently carried out by initial formation of the internucleotidic phosphite linkage followed by sulfurization of the phosphite triester to phosphorothioate using the Beaucage reagent. The resulting O,O-linked phosphorothioate diester linkage in the oligonucleotide is a chiral functional group. For a typical 20-mer there are 524,288 (219) possible diastereoisomers. Separation and individual quantification of this number of diastereomers is currently not feasible. In addition, the best reported methods for stereocontrolled synthesis of phosphorothioate oligomers are not presently useful for drug synthesis; that is, since net 100% enantiomeric excess is not achieved in the coupling step, the oligomeric product still consists of the same mixture of Sp and Rp diastereomers, except that the levels of all but one isomer are reduced to low individual levels. As a result, even a small change in the and Sp phosphorothioate diesters, due to racemization during coupling, indicating that the overall synthetic process is stereo reproducible and under inherent process control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号