首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sueoka N 《Gene》2002,300(1-2):141-154
The intra-strand Parity Rule 2 of DNA (PR2) states that A=T and G=C within each strands. Useful corollaries of PR2 are G/(G+C)=A/(A+T)=0.5, G/(G+A)=C/(C+T)=G+C, G/(G+T)=C/(C+A)=G+C. Here. A, T, G, and C represent relative contents of the four nucleotide residues in a specific strand of DNA, so that A+T+G+C=1. Thus, deviations from the PR2 is a sign of strand-specific (or asymmetric) mutation and/or selection pressures. The present study delineates the symmetric and asymmetric effects of mutations on the intra-genomic heterogeneity of the G+C content in the human genome. The results of this study on the human genome are: (1) When both two- and four-codon amino acids were combined, only slight departures from the PR2 were observed in the total ranges of G+C content of the third-codon position. Thus, the G+C heterogeneity is likely to be caused by symmetric mutagenesis between the two strands. (2) The above result makes the deamination of cytosine due to double-strand breathing of DNA [Mol. Biol. Evol. 17 (2000) 1371] and/or incorporation of the oxidized guanine (8-oxo-guanine) opposite adenine during DNA replication (dGTP-oxidation hypothesis) as the most likely candidates for the major cause of the diversities of the G+C content. (3) Patterns of amino acid-specific PR2-biases detected by plotting PR2 corollaries against the G+C content of third codon position revealed that eight four-codon amino acids can be divided into three types by the second codon letter: (a) C2-type (Ala, Pro, Ser4, and Thr), (b) G2-type (Arg4 and Gly), and (c) T2-type (Leu4 and Val). (4) Most of the asymmetric plot patterns of the above three classes in PR2 biases can be explained by C2→T2 deamination of C2pG3 of C2-type to T2pG3 (T2-type) in both human and chicken. This explains the existence of some preferred codons in human and chicken. However, these biases (asymmetric) hardly contribute to the overall G+C content diversity of the third codon position.  相似文献   

2.
The relative contribution of mutation and selection to the G+C content of DNA was analyzed in bacterial species having widely different G+C contents. The analysis used two methods that were developed previously. The first method was to plot the average G+C content of a set of nucleotides against the G+C content of the third codon position for each gene. This method was used to present the G+C distribution of the third codon position and to assess the relative neutrality of a set of nucleotides to that of the G+C content of the third codon position. The second method was to plot the intrastrand bias of the third codon position from Parity Rule 2 (PR2), where A=T and G=C. It was found that whereas intragenomic distributions of the DNA G+C content of these bacteria are narrow in the majority of species, in some species the G+C content of the minor class of genes distributes over wider ranges than the major class of genes. On the other hand, ubiquitous PR2 biases are amino acid specific and independent of the G+C content of DNA, so that when averaged over the amino acids, the biases are small and not correlated with the DNA G+C content. Therefore, translation coupled PR2-biases are unlikely to explain the wide range of G+C contents among different species. Considering all data available, it was concluded that the amino acid-specific PR2 bias has only a minor effect, if any, on the average G+C content. In addition, PR2 bias patterns of different species show phylogenetic relationships, and the pattern can be as a taxal fingerprint. Received: 5 November 1998 / Accepted: 1 March 1999  相似文献   

3.
4.
Genes of a multicellular organism are heterogeneous in the G+C content, which is particularly true in the third codon position. The extent of deviation from intra-strand equality rule of A = T and G = C (Parity Rule 2, or PR2) is specific for individual amino acids and has been expressed as the PR2-bias fingerprint. Previous results suggested that the PR2-bias fingerprints tend to be similar among the genes of an organism, and the fingerprint of the organism is specific for different taxa, reflecting phylogenetic relationships of organisms. In this study, using coding sequences of a large number of human genes, we examined the intragenomic heterogeneity of their PR2-bias fingerprints in relation to the G+C content of the third codon position (P 3 ). Result shows that the PR2-bias fingerprint is similar in the wide range of the G+C content at the third codon position (0.30–0.80). This range covers approximately 89% of the genes, and further analysis of the high G+C range (0.80–1.00), where genes with normal PR2-bias fingerprints and those with anomalous fingerprints are mixed, shows that the total of 95% of genes have the similar finger prints. The result indicates that the PR2-bias fingerprint is a unique property of an organism and represents the overall characteristics of the genome. Combined with the previous results that the evolutionary change of the PR2-bias fingerprint is a slow process, PR2-bias fingerprints may be used for the phylogenetic analyses to supplement and augment the conventional methods that use the differences of the sequences of orthologous proteins and nucleic acids. Potential advantages and disadvantages of the PR2-bias fingerprint analysis are discussed. Received: 21 December 2000 / Accepted: 16 February 2001  相似文献   

5.
Evolution of codon usage and base contents in kinetoplastid protozoans   总被引:2,自引:0,他引:2  
In this study we analyze and compare the trends in codon usage in five representative species of kinetoplastid protozoans (Crithidia fasciculata, Leishmania donovani, L. major, Trypanosoma cruzi and T. brucei), with the purpose of investigating the processes underlying these trends. A principal component analysis shows that the G+C content at the third codon position represents the main source of codon-usage variation, both within species (among genes) and among species. The non- Trypanosoma species exhibit narrow distributions in codon usage, while both Trypanosoma species present large within-species heterogeneity. The three non-Trypanosoma species have very similar codon-usage preferences. These codon preferences are also shared by the highly expressed genes of T. cruzi and to a lesser degree by those of T. brucei. This leads to the conclusion that the codon preferences shared by these species are the ancestral ones in the kinetoplastids. On the other hand, the study of noncoding sequences shows that Trypanosoma species exhibit mutational biases toward A + T richness, while the non- Trypanosoma species present mutational pressure in the opposite direction. These data taken together allow us to infer the origin of the different codon-usage distributions observed in the five species studied. In C. fasciculata and Leishmania, both mutational biases and (translational) selection pull toward G + C richness, resulting in a narrow distribution. In Trypanosoma species the mutational pressure toward A + T richness produced a shift in their genomes that differentially affected coding and noncoding sequences. The effect of these pressures on the third codon position of genes seems to have been inversely proportional to the level of gene expression.   相似文献   

6.
T Ohama  A Muto    S Osawa 《Nucleic acids research》1990,18(6):1565-1569
The GC (G + C, or G or C)-contents of codon silent positions in all two-codon sets and three codons AUY/A (IIe), and in most of the family boxes of Micrococcus luteus (genomic GC-content: 74%) are 95% to 100% in both the highly and weakly expressed genes. In some family boxes, there is a decrease in NNC codons and an increase in NNG codons from the highly expressed to weakly expressed genes without apparent involvement of NNU and NNA codons. From these observations, we conclude that the selective use of synonymous codons in M. luteus may be largely determined by GC-biased mutation pressure and that in the highly expressed genes tRNAs would act as a weak selection pressure in some family boxes. Available data suggest that the effect of selection pressure by tRNAs on the synonymous codon choice becomes more apparent in the highly expressed genes in eubacteria with intermediate GC-contents such as Escherichia coli and Bacillus subtilis, and that the U/C ratio of the codon third positions in NNU/C-type two-codon sets in the weakly expressed genes would represent the approximate magnitude of directional mutation pressure throughout eubacteria.  相似文献   

7.
Codon usage in Clonorchis sinensis was analyzed using 12,515 codons from 38 coding sequences. Total GC content was 49.83%, and GC1, GC2 and GC3 contents were 56.32%, 43.15% and 50.00%, respectively. The effective number of codons converged at 51-53 codons. When plotted against total GC content or GC3, codon usage was distributed in relation to GC3 biases. Relative synonymous codon usage for each codon revealed a single major trend, which was highly correlated with GC content at the third position when codons began with A or U at the first two positions. In codons beginning with G or C base at the first two positions, the G or C base rarely occurred at the third position. These results suggest that codon usage is shaped by a bias towards G or C at the third base, and that this is affected by the first and second bases.  相似文献   

8.
Summary Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G+C content of codon third base reveals a positive linear correlation with the genome G+C content of the corresponding species. The slope strongly suggests that the overall G+C content of codons of polyubiquitin genes clearly reflects the genome G+C content by AT/GC substitutions at the codon third position. The G+C content of ubiquitin codon third base also shows a positive linear correlation with the overall G+C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.  相似文献   

9.
ABSTRACT: BACKGROUND: Synonymous codon usage bias has typically been correlated with, and attributed to translational efficiency. However, there are other pressures on genomic sequence composition that can affect codon usage patterns such as mutational biases. This study provides an analysis of the codon usage patterns in Arabidopsis thaliana in relation to gene expression levels, codon volatility, mutational biases and selective pressures. RESULTS: We have performed synonymous codon usage and codon volatility analyses for all genes in the A. thaliana genome. In contrast to reports for species from other kingdoms, we find that neither codon usage nor volatility are correlated with selection pressure (as measured by dN/dS), nor with gene expression levels on a genome wide level. Our results show that codon volatility and usage are not synonymous, rather that they are correlated with the abundance of G and C at the third codon position (GC3). CONCLUSIONS: Our results indicate that while the A. thaliana genome shows evidence for synonymous codon usage bias, this is not related to the expression levels of its constituent genes. Neither codon volatility nor codon usage are correlated with expression levels or selective pressures but, because they are directly related to the composition of G and C at the third codon position, they are the result of mutational bias. Therefore, in A. thaliana codon volatility and usage do not result from selection for translation efficiency or protein functional shift as measured by positive selection.  相似文献   

10.
Abstract The G + C content in a sequenced region of 27 kb of the Nocardia lactamdurans genome is 70.4 and 70.6% in the 14 characterized ORFs, showing an extreme average G + C content (94.9%) in the third codon position. The codon usage parameters of the N. lactamdurans genes studied are closely related and depart weakly from the values of other species of the genus Nocardia . The homologies and differences in the codon usage between N. lactamdurans and Streptomyces sp. or other high-G + C Gram-positive genera are analysed.  相似文献   

11.
The usage of alternative synonymous codons in the apicomplexan Cryptosporidium parvum has been investigated. A data set of 54 genes was analysed. Overall, A- and U-ending codons predominate, as expected in an A+T-rich genome. Two trends of codon usage variation among genes were identified using correspondence analysis. The primary trend is in the extent of usage of a subset of presumably translationally optimal codons, that are used at significantly higher frequencies in genes expected to be expressed at high levels. Fifteen of the 18 codons identified as optimal are more G+C-rich than the otherwise common codons, so that codon selection associated with translation opposes the general mutation bias. Among 40 genes with lower frequencies of these optimal codons, a secondary trend in G+C content was identified. In these genes, G+C content at synonymously variable third positions of codons is correlated with that in 5' and 3' flanking sequences, indicative of regional variation in G+C content, perhaps reflecting regional variation in mutational biases.  相似文献   

12.
Sequence Evolution of Drosophila Mitochondrial DNA   总被引:15,自引:3,他引:15       下载免费PDF全文
We have compared nucleotide sequences of corresponding segments of the mitochondrial DNA (mtDNA) molecules of Drosophila yakuba and Drosophila melanogaster, which contain the genes for six proteins and seven tRNAs. The overall frequency of substitution between the nucleotide sequences of these protein genes is 7.2%. As was found for mtDNAs from closely related mammals, most substitutions (86%) in Drosophila mitochondrial protein genes do not result in an amino acid replacement. However, the frequencies of transitions and transversions are approximately equal in Drosophila mtDNAs, which is in contrast to the vast excess of transitions over transversions in mammalian mtDNAs. In Drosophila mtDNAs the frequency of C----T substitutions per codon in the third position is 2.5 times greater among codons of two-codon families than among codons of four-codon families; this is contrary to the hypothesis that third position silent substitutions are neutral in regard to selection. In the third position of codons of four-codon families transversions are 4.6 times more frequent than transitions and A----T substitutions account for 86% of all transversions. Ninety-four percent of all codons in the Drosophila mtDNA segments analyzed end in A or T. However, as this alone cannot account for the observed high frequency of A----T substitutions there must be either a disproportionately high rate of A----T mutation in Drosophila mtDNA or selection bias for the products of A----T mutation. --Consideration of the frequencies of interchange of AGA and AGT codons in the corresponding D. yakuba and D. melanogaster mitochondrial protein genes provides strong support for the view that AGA specifies serine in the Drosophila mitochondrial genetic code.  相似文献   

13.
Understanding regulatory mechanisms of protein synthesis in eukaryotes is essential for the accurate annotation of genome sequences. Kozak reported that the nucleotide sequence GCCGCC(A/G)CCAUGG (AUG is the initiation codon) was frequently observed in vertebrate genes and that this 'consensus' sequence enhanced translation initiation. However, later studies using invertebrate, fungal and plant genes reported different 'consensus' sequences. In this study, we conducted extensive comparative analyses of nucleotide sequences around the initiation codon by using genomic data from 47 eukaryote species including animals, fungi, plants and protists. The analyses revealed that preferred nucleotide sequences are quite diverse among different species, but differences between patterns of nucleotide bias roughly reflect the evolutionary relationships of the species. We also found strong biases of A/G at position -3, A/C at position -2 and C at position +5 that were commonly observed in all species examined. Genes with higher expression levels showed stronger signals, suggesting that these nucleotides are responsible for the regulation of translation initiation. The diversity of preferred nucleotide sequences around the initiation codon might be explained by differences in relative contributions from two distinct patterns, GCCGCCAUG and AAAAAAAUG, which implies the presence of multiple molecular mechanisms for controlling translation initiation.  相似文献   

14.
Vinyl chloride reductases (VC-RDase) are the key enzymes for complete microbial reductive dehalogenation of chloroethenes, including the groundwater pollutants tetrachloroethene and trichloroethene. Analysis of the codon usage of the VC-RDase genes vcrA and bvcA showed that these genes are highly unusual and are characterized by a low G+C fraction at the third position. The third position of codons in VC-RDase genes is biased toward the nucleotide T, even though available Dehalococcoides genome sequences indicate the absence of any tRNAs matching codons that end in T. The comparatively high level of abnormality in the codon usage of VC-RDase genes suggests an evolutionary history that is different from that of most other Dehalococcoides genes.  相似文献   

15.
Base composition is not uniform across the genome of Drosophila melanogaster. Earlier analyses have suggested that there is variation in composition in D. melanogaster on both a large scale and a much smaller, within-gene, scale. Here we present analyses on 117 genes which have reliable intron/exon boundaries and no known alternative splicing. We detect significant heterogeneity in G+C content among intron segments from the same gene, as well as a significant positive correlation between the intron and the third codon position G+C content within genes. Both of these observations appear to be due, in part, to an overall decline in intron and third codon position G+C content along Drosophila genes with introns. However, there is also evidence of an increase in third codon position G+C content at the start of genes; this is particularly evident in genes without introns. This is consistent with selection acting against preferred codons at the start of genes. Received: 24 February 1997 / Accepted: 10 November 1997  相似文献   

16.
The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2,006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1,836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

17.
The sequences of the human genome compiled in DNA databases are now about 10 megabase pairs (Mb), and thus the size of the sequences is several times the average size of chromosome bands at high resolution. By surveying this large quantity of data, it may be possible to clarify the global characteristics of the human genome, that is, correlation of gene sequence data (kb-level) to cytogenetic data (Mb-level). By extensively searching the GenBank database, we calculated codon usages in about 2000 human sequences. The highest G + C percentage at the third codon position was 97%, and that of about 250 sequences was 80% or more. The lowest G + C% was 27%, and that in about 150 sequences was 40% or less. A major portion of the GC-rich genes was found to be on special subsets of R-bands (T-bands and/or terminal R-bands). AT-rich genes, however, were mainly on G-bands or non-T-type internal R-bands. Average G + C% at the third position for individual chromosomes differed among chromosomes, and were related to T-band density, quinacrine dullness, and mitotic chiasmata density in the respective chromosomes.  相似文献   

18.
The variation in base composition at the three codon sites in relation to gene expressivity, the latter estimated by the Codon Adaptation Index, has been studied in a sample of 1371 Escherichia coli genes. Correlation and regression analyses show that increasing expression levels are accompanied by higher frequencies of base G at first, of base A at second and of base C at third codon positions. However, correlation between expressivity and base compositional biases at each codon site was only significant and positive at first codon position. The preference for G-starting codons as gene expression level increases is discussed in terms of translational optimization.  相似文献   

19.
We conducted a genome-wide analysis of variations in guanine plus cytosine (G+C) content at the third codon position at silent substitution sites of orthologous human and mouse protein-coding nucleotide sequences. Alignments of 3776 human protein-coding DNA sequences with mouse orthologs having >50 synonymous codons were analyzed, and nucleotide substitutions were counted by comparing sequences in the alignments extracted from gap-free regions. The G+C content at silent sites in these pairs of genes showed a strong negative correlation (r = -0.93). Some gene pairs showed significant differences in G+C content at the third codon position at silent substitution sites. For example, human thymine-DNA glycosylase was A+T-rich at the silent substitution sites, while the orthologous mouse sequence was G+C-rich at the corresponding sites. In contrast, human matrix metalloproteinase 23B was G+C-rich at silent substitution sites, while the mouse ortholog was A+T-rich. We discuss possible implications of this significant negative correlation of G+C content at silent sites.  相似文献   

20.
Analysis of synonymous codon usage bias in Chlamydia   总被引:9,自引:0,他引:9  
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号