首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Natural genetic transformation in the bacterium Bacillus subtilis provides a model system to explore the evolutionary function of sexual recombination. In the present work, we study the response of transformation to UV irradiation using donor DNAs that differ in sequence homology to the recipient's chromosome and in the mechanism of transformation. The four donor DNAs used include homologous-chromosomal-DNA, two plasmids containing a fragment of B. subtilis trp+ operon DNA and a plasmid with no sequence homology to the recipient cell's DNA. Transformation frequencies for these DNA molecules increase with increasing levels of DNA damage (UV radiation) to recipient cells, only if their transformation requires homologous recombination (i.e. is recA+-dependent). Transformation with non-homologous DNA is independent of the recipient's recombination system and transformation frequencies for it do not respond to increases in UV radiation. The transformation frequency for a selectable marker increases in response to DNA damage more dramatically when the locus is present on small, plasmid-borne, homologous fragments than if it is carried on high molecular weight chromosomal fragments. We also study the kinetics of transformation for the different donor DNAs. Different kinetics are observed for homologous transformation depending on whether the homologous locus is carried on a plasmid or on chromosomal fragments. Chromosomal DNA- and non-homologous-plasmid-DNA-mediated transformation is complete (maximal) within several minutes, while transformation with a plasmid containing homologous DNA is still occurring after an hour. The results indicate that DNA damage directly increases rates of homologous recombination and transformation in B. subtilis. The relevance of these results and recent results of other labs to the evolution of transformation are discussed.  相似文献   

4.
Summary The ability of a recA Hfr strain of Escherichia coli to form colonies is extremely sensitive to inhibition by ultraviolet light (Fig. 2). Furthermore, in this strain the synthesis of DNA is stopped completely by a dose of 385 ergs/mm2 of UV (Fig. 3). Nevertheless, the ability of this recA Hfr strain to act as a donor in sexual recombination was no more sensitive to UV than that of a wild type donor (Fig. 1). Furthermore, when irradiated and mated with a recA female, in which DNA synthesis was also inhibited by UV (Fig. 3), there was a net synthesis of DNA as measured by the incorporation of C14 thymidine (Fig. 4). By using nalidixic acid resistant recA donors and recipients in all combinations, irradiating with UV and treating with nalidixic acid during mating, it is shown that DNA was synthesized by the donor (Fig. 5). It is concluded that synthesis of DNA directed by the sex factor during mating in a recA donor is not as sensitive to inhibition by UV as normal DNA synthesis in a recA donor.  相似文献   

5.
We have examined the influence of proximity on the efficiency of recombination between repeated DNA sequences in Escherichia coli. Our experiments have employed a plasmid-based assay to detect deletions between direct repeats of 100 bp. The rate of deletion of the juxtaposed direct repeats was reasonably high at 6 × 10–5 per cell. A comparison of recA+ and recA mutant strains showed that these deletion events are primarily the result of recA-independent recombination at these homologous sequences. Random restriction fragments of yeast or E. coli genomic DNA were used to separate the two repeats. Deletion rates decreased over two orders of magnitude with increasing separation of up to 7 kb. There was a surprisingly strong effect of even short sequence separations, with insertions of a few hundred base pairs exhibiting 10-fold reductions of deletion rates. No effect of recA on the efficiency of deletion was observed at any distance between repeats.  相似文献   

6.
We have examined the influence of proximity on the efficiency of recombination between repeated DNA sequences in Escherichia coli. Our experiments have employed a plasmid-based assay to detect deletions between direct repeats of 100 bp. The rate of deletion of the juxtaposed direct repeats was reasonably high at 6 × 10?5 per cell. A comparison of recA+ and recA mutant strains showed that these deletion events are primarily the result of recA-independent recombination at these homologous sequences. Random restriction fragments of yeast or E. coli genomic DNA were used to separate the two repeats. Deletion rates decreased over two orders of magnitude with increasing separation of up to 7 kb. There was a surprisingly strong effect of even short sequence separations, with insertions of a few hundred base pairs exhibiting 10-fold reductions of deletion rates. No effect of recA on the efficiency of deletion was observed at any distance between repeats.  相似文献   

7.
Pretreatment with 2.5mm H2O2 protects bacterial cells against UV killing, a phenomenon that is independent of the SOS response. This protection possibly involves the induction of some other DNA repair mechanism, sincelexA (Ind) mutants pretreated with this concentration of H2O2 enhance the repair of UV-damaged phages. Moreover, the induction of this DNA repair mechanism is independent of theoxyR regulon. However, the repair of UV-damaged phages is not enhanced inrecA anduvrA mutants, suggesting a DNA repair mechanism independent of LexA cleavage or OxyR activation, but dependent on RecA and UvrA proteins.  相似文献   

8.
Summary The kanamycin resistance gene (kan) of transposon Tn5 was cloned into a derivative of plasmid pBR322. A DNA fragment containing the promoter-operator region of the recA gene was inserted into the promoter region of the cloned kan gene to produce a fused operon, recA-kan. Plasmid pMCR685 carrying recA-kan expressed a low level of activity of the kan gene product (kanamycin phosphotransferase; KPT) in the wildtype cells of Escherichia coli, while the plasmid showed an increased level of the activity in the Spr- mutant cells which produce the inactive lexA protein. The KPT activity in the wildtype cells harboring the plasmid increased 6-to 11-fold upon treatment of the cells with mitomycin C or nalidixic acid, both of which are known to induce synthesis of recA protein.Expression of the recA-kan operon fusion was remakably repressed by the lexA gene cloned into a plasmid carrying the operon fusion. Higher concentrations of mitomycin C were required for maximal induction of KPT activity in the cells harboring the resulting plasmid pMCR687. These results strongly suggest that the lexA gene product can by itself repress the recA gene, and that pMCR687 is a useful vector to clone genes whose expression is harmful to the host cell growth.  相似文献   

9.
ArecA clone was isolated from a cosmid library ofSerratia entomophila constructed in theEscherichia coli strain HB101. Subcloning and transposon mutagenesis were used to identify a 1.36 kb fragment containing therecA gene. A clonedrecA mutation, generated by transposon mutagenesis and the replacement of a portion of therecA gene with an antibiotic resistance cassette, was introduced into the chromosome via a marker exchange technique. TherecA strains created were deficient in DNA repair, homologous recombination and both the spontaneous and UV induction of prophages.S. entomophila recA strains showed continued pathogenicity towards the New Zealand grass grub,Costelytra zealandica. Simple procedures for further construction ofS. entomophila recA strains have been demonstrated.  相似文献   

10.
Previous workers reported that the T4 bacteriophage UvsX protein could promote neither RecA-LexA-mediated DNA repair nor induction of lysogenized bacteriophage, only recombination. Reexamination of these phenotypes demonstrated that, in contrast to these prior studies, when this gene was cloned into a medium but not a low-copy-number vector, it stimulated both a high frequency of spontaneous induction and mitomycin C-stimulated bacteriophage induction in a strain containing a recA13 mutation, but not a recA1 defect. The gene when cloned into a low- or medium- copy-number vector also promoted a low frequency of recombination of two duplicated genes in Escherichia coli in a strain with a complete recA gene deletion. These results suggest that a narrow concentration range of T4 UvsX protein is required to promote both high-frequency spontaneous and mitomycin C-stimulated bacteriophage induction in a recA13 gene mutant, but it facilitates recombination of duplicated genes at only a very low frequency in E. coli RecA mutants with a complete recA deletion. These results also suggest that the different UvsX phenotypes are affected differentially by the concentration of UvsX protein present. Received: 11 February 2002 / Accepted: 12 April 2002  相似文献   

11.
Summary Previous studies have shown that transformation of Escherichia coli by plasmid DNA modified in vitro by carcinogens leads to RecA-dependant recombination between homologous plasmid and chromosomal DNA sequences. The mechanism of this recombination has now been studied using recombination-deficient mutants, and the influence of induction of the SOS response on the level of recombination investigated. Plasmid pNO1523, containing the str + operon (Sms), has been modified in vitro by either irradiation with UV light, or by reaction with (±) trans-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) and used to transform streptomycin-resistant hosts. The formation of Ampr transformants which also carry streptomycin resistance was used as a measure of the level of recombination between plasmid and chromosomal DNA. Transformation of recB and recC mutants produced no change in the level of recombination while in the recF mutant a significant decrease was observed compared to the wild type host. Thermal induction of the SOS response in tif-1 and tif-1 umuC mutants followed by transformation led to a four-fold increase in recombination in both cases. The results suggest that the streptomycin-resistant transformants arise exclusively via a recombinational pathway which is largely dependant on the recF gene product, and that this pathway is influenced by induction of the SOS response. These results are discussed in terms of the mechanism of this recombination.  相似文献   

12.
Summary The sdrA102 mutation confers upon cells the ability to replicate DNA in the absence of protein synthesis. This mutation was combined with the recA200 mutation, which renders the recA protein thermolabile, and had little effect on normal replication. However, the sdrA102 recA200 double mutant exhibited temperature-sensitive stable DNA replication: it replicated DNA continuously in the presence of chloramphenicol at 30°C, whereas at 42°C DNA replication ceased after the DNA content increased only 40–45%. Suppressor mutants (rin; recA-independent) capable of stable DNA replication at 42°C were isolated from the double mutant. The suppressor mutant retained all other recA characteristics, i.e., deficient general recombination, severe UV-sensitivity, and incapability of prophage induction in lysogens. This indicates that the rin mutation specifically suppresses the recA + dependency of stable DNA replication. It is suggested that the recA + protein stabilizes a specific structure, similar to an intermediate in recombination, which may function in the initiation of stable DNA replication.  相似文献   

13.
Mycoplasma genitalium, a sexually transmitted human pathogen, encodes MgpB and MgpC adhesins that undergo phase and antigenic variation through recombination with archived ‘MgPar’ donor sequences. The mechanism and molecular factors required for this genetic variation are poorly understood. In this study, we estimate that sequence variation at the mgpB/C locus occurs in vitro at a frequency of > 1.25 × 10?4 events per genome per generation using a quantitative anchored PCR assay. This rate was dramatically reduced in a recA deletion mutant and increased in a complemented strain overexpressing RecA. Similarly, the frequency of haemadsorption‐deficient phase variants was reduced in the recA mutant, but restored by complementation. Unlike Escherichia coli, inactivation of recA in M. genitalium had a minimal effect on survival after exposure to mitomycin C or UV irradiation. In contrast, a deletion mutant for the predicted nucleotide excision repair uvrC gene showed growth defects and was exquisitely sensitive to DNA damage. We conclude that M. genitalium RecA has a primary role in mgpB/C–MgPar recombination leading to antigenic and phase variation, yet plays a minor role in DNA repair. Our results also suggest that M. genitalium possesses an active nucleotide excision repair system, possibly representing the main DNA repair pathway in this minimal bacterium.  相似文献   

14.
Summary We have detected in vitro homologous recombination mediated by purified recA protein of Escherichia coli as a recombinant phage produced by using the DNA packaging system of phage . When double-stranded DNA of phage carrying amber mutations is incubated with double-stranded DNA carrying the wild-type genes in the presence of recA protein, Mg++ and ATP, and the DNA packaged, amber + recombinant phage is produced at a high frequency. This reaction depends completely upon the function of the wild-type recA protein. After incubation of 32P-labeled linear DNA (Form III) with bromouracil-labeled circular DNA (Form I-Form II mixture) in the presence of recA protein, Mg++ and ATP, about 10% of the 32P-counts band at an intermediate density in CsCl equilibrium gradient. This fraction yields a high percentage of the recombinant phage after DNA packaging and shows the -shaped and -shaped joint molecules of linear and circular DNA under the electron microscope. Furthermore, we demonstrate that a non-homologous region inhibits the recombination reaction when it is between the marker concerned and the closer cos end. Our results indicate thatrecA protein acts directly in the initial step of recombination to join the homologous double-stranded DNA and that the resulting molecule can be matured into the recombinant DNA.Abbreviations kb kilobase pairs - PFU plaque forming units - Form I superhelical closed circular DNA - Form II open circular DNA - Form III linear DNA  相似文献   

15.
We have identified a new class of DNA gyrase mutants of Salmonella typhimurium that show chronic derepression of the SOS regulon. Thus, these mutants mimic the response of wild-type cells to gyrase inhibitors of the quinolone family. SOS induction by conditional lethal mutations gyrA208 or gyrB652, like that mediated by quinolones, is completely dependent on the function of the recB gene product. Introduction of recA or recB null mutations into these strains exacerbates their temperature-sensitive phenotype and prevents growth at the otherwise permissive temperature of 37°C. Selection of suppressors that concomitantly restore growth at 37°C and SOS induction in a recB? background yielded mutations that relieve the RecB requirement for homologous recombination; namely, sbcB mutations as well as mutations at a new locus that was named sbcE. Such mutations also restore SOS induction in quinolone-treated gyr+recB? strains. These findings indicate that Rec functions are needed for growth of the gyrase mutants at 37°C and suggest that recombinational repair intermediates constitute the SOS-inducing signal in the mutants as well as in quinolone-treated wild-type bacteria. Unlike quinolones, however, the gyr mutations described in this study do not cause detectable accumulation of ‘cleavable’ gyrase–DNA complexes in plasmid or chromosomal DNA. Yet gyrA208 (the only allele tested) was found to trigger RecB-mediated reckless degradation of chromosomal DNA in recA? cells at restrictive temperatures. Indirect evidence suggests that double-stranded DNA ends, entry sites for the RecBCD enzyme, are generated in the gyr mutants by the breakage of DNA-replication forks. We discuss how this could occur and how recombinational rescue of collapsed replication forks could account for cell survival (and SOS induction) in the gyr mutants as well as in quinolone-treated bacteria.  相似文献   

16.
Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA‐dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA‐ComFC duo at the interface between DNA uptake and DNA recombination during transformation.  相似文献   

17.
Summary Conjugational recombination in Escherichia coli was investigated by measuring lacZ + product, -galactosidase, in crosses between lacZ mutants. Enzyme production in both Hfr and F-prime crosses was detected very soon after transfer of the donor lacZ allele. The level of enzyme activity was reduced by no more than two-fold when the recipient carried a recB mutation. With an F-prime donor, recombination appeared to be restricted largely to a short period immediately after transfer, with little evidence of recombination during subsequent exponential growth of the transconjugant cells. These observations are interpreted to suggest that recA dependent recombination is able to initiate with high efficiency at gaps present in the donor DNA before synthesis of a complementary strand is completed, and independently of recB function. A molecular model for conjugational recombination based on this idea is presented in terms of the known activities of recA and recBC products. Some of the predictions of the model are tested by analysing the recombinant genotypes produced in Hfr crosses with multiply marked strains.  相似文献   

18.
19.
Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10−4 bp−1. This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci.  相似文献   

20.
Summary The relative yield (N m/N) of fluorescent mutants Ind- after the transformation of Bacillus subtilis cells by means of UV-irradiated DNA is much higher in an uvr - recipient than in an uvr + strain, when compared at equal fluence, but practically identical at equal survival. Ind- mutations are induced by UV-irradiation of separated single strands of transforming DNA. The H-strand is much more sensitive to the mutagenic action of UV light. Preliminary irradiation of competent recipient cells by moderate UV fluences increases the survival of UV-or -irradiated transforming DNA (W-reactivation) and the frequency of Ind- mutations (W-mutagenesis). During transfection of B. subtilis cells by UV-irradiated prophage DNA isolated from lysogenic cells B. subtilis (Ø105 c +) c-mutants of the phage are obtained in high yield only in conditions of W-mutagenesis, i.e. in UV-irradiated recipient cells. These data show that there is no substantial spontaneous induction of error-prone SOS-repair system in the competent cells of B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号