首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

2.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

3.
The gltX gene encoding glutamyl-tRNA synthetase from Methanobacterium thermoautotrophicum has been cloned, sequenced, and identified. The gene is located immediately downstream of idsA in an operon containing at least three additional ORFs. The deduced protein sequence from gltX contains conserved regions (HIGH and KMSKS) indicative of a class I aminoacyl-tRNA synthetase.  相似文献   

4.
5.
A gene encoding a mannanase (ManA) was cloned from the genomic library ofErwinia carotovora CXJZ95-198 and expressed inEscherichia coli cells. A 1783 bp DNA fragment containing amanA gene was sequenced. An open reading frame (ORF) of 1137 bp encoded a protein of 378 amino acids. The expressed enzyme had a molecular mass of approximately 42 KD determined by SDS-PAGE. The optimal pH and temperature for the expressed enzyme was 7.5 and 55 °C, respectively. The nucleotide sequence ofmanA had remarkably low homology with other sequences reported. No typical promoter was found but a palindrome sequence existed downstream of the stop codon. The deduced amino acid sequence from mature ManA showed homology of about 53% with those fromBacillus sp., but much lower homology with those from other strains. The ManA was presumably classified as family 26 of glycosidases. It was also clarified that the 1.3 kb fragment up the locus nt 4449729 ofErwinia carotovora genomic DNA was a mannanase gene.  相似文献   

6.
The metal-responsivesmt operator/promoter region ofSynechococcus PCC7942 was fused to theluxCDABE genes ofVibrio fischeri. Plasmid DNA (pJLE23) carrying this fusion conferred metal ion-inducible luminescence to transformed cyanobacteria.Synechococcus PCC7942 (pJLE23) was sensitive to ZnCl2 concentrations within a range of 0.5–4 μM as demonstrated by induction of luminescence. Trace levels of CuSO4, and CdCl2 were also detected.  相似文献   

7.
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned arecA homolog fromHelicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to theCampylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus σ70 promoter sequence was found upstream ofrec A. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream ofrecA. Compared to the wild-type strains, isogenicH. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinantH. pylori RecA protein produced inEscherichia coli strain GC6 (recA ?) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein inH. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of theH. pylori mutant using the clonedrecA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA inH. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced inE. coli, giving rise to a smaller but inactive protein.  相似文献   

8.
9.
It has been reported that higher plants and cyanobacteria synthesize sucrose (Suc) by a similar sequential action of sucrose-phosphate synthase (SPS) and sucrose-phosphate phosphatase (SPP). In the genome of the marine unicellular cyanobacterium Synechococcus sp. PCC 7002 there is a sequence that was not annotated as a putative SPP encoding gene (sppA), although the sequence was available. In this study, we functionally characterize the sppA gene of that strain and demonstrate that it is cotranscribed with spsA, the SPS encoding gene. This is the first report on the coordination of Suc synthesis gene expression in an oxygenic-photosynthetic organism.  相似文献   

10.
11.
A 1.2kb DNA fragment was cloned from Synechococcus sp. PCC7942, which is able phenotypicalty to complement a phoRcreC Escherichia coli mutant for the expression of alkaline phosphatase. A 2.5kb DNA fragment encompassing the putative gene was then cloned and its complete nucleotide sequence determined. Nucleotide sequencing revealed that the intact gene encodes a protein of 46389 Da, and that the deduced amino acid sequence shows a high degree of homology to those of the bacterial sensory kinase family. In the determined nucleotide sequence, another gene was adjacently located, which encodes a protein of 29012Da. This protein shows a high degree of homology to those of the response regulator family. Thus, we succeeded in the cloning of a pair of genes encoding the sensory kinase and response regulator, respectively, in a cyanobacterium. Mutant strains that lack these genes were constructed, and demonstrated to be defective in their ability to produce alkaline phosphatase and some inducible proteins in response to phosphate-limitation in the medium. These results imply that the gene products identified in this study are probably involved, either directly or indirectly, in the signal-transduction mechanism underlying regulation of the phosphate regulon in Synechococcus sp. PCC7942. Hence, the genes encoding the sensory kinase and response regulator were designated as sphS and sphR, respectively (S ynechococcusph osphate regulon). The SphS protein was demonstrated in vitro to undergo phosphorylation in the presence of ATP.  相似文献   

12.
Summary Bioconversion of atmospheric carbon dioxide to ethylene was studied in a recombinant cyanobacterium. The gene for the ethylene-forming enzyme ofPseudomonas syringae pv.phaseolicola PK2 was cloned and expressed in the cyanobacteriumSynechococcus PCC7942 R2-SPc by use of a shuttle vector pUC303. The ethylene-forming activityin vivo ofSynechococcus PCC7942 R2-SPc that carried the gene for the ethylene-forming enzyme ofP. syringae pv.phaseolicola PK2 was one-fifth of that ofE. coli JM109 that harbored the same plasmid. The enzyme accounted for 0.021% by weight of the total soluble protein inSynechococcus PCC7942 R2-SPc.  相似文献   

13.
TnphoA mutagenesis identified an open reading frame,roa307, immediately upstream of the partition locusqsopAB on theCoxiella burnetii plasmid QpH1. The protein sequence deduced fromroa307 displayed homology to Orf290 ofPseudomonas putida, Orf283 and Orf282 (SpoOJ) ofBacillus subtilis —hypothetical products of genes in the chromosomal replication origin region. Expression ofroa307 was demonstrated by PhoA activity of an Roa307-PhoA fusion.  相似文献   

14.
We report the cloning and sequencing of therecA gene fromSpirulina platensis. A genomic library ofSpirulina was constructed in pUC19 and screened by PCR using oligonucleotides corresponding to the conserved amino acid sequences ofAnabaena variabilis andSynechococcus RecA proteins. TheSpirulina recA gene consists of an open reading frame (ORF) of 1095 nucleotides encoding a protein (365 residues) which shares an identity of 79%, 70% and 57% with the RecA proteins ofAnabaena variabilis, Synechococcus andEscherichia coli respectively. TherecA gene is located close to one end of the clonedBglII fragment and has only 53 bp of 5 nucleotides. The isolation of this gene has implications for the development of gene transfer system(s) forSpirulina.  相似文献   

15.
We have characterised aSaccharomyces cerevisiae cDNA (cDNA13), originally isolated on the basis of the short half-life of the corresponding mRNA. We show here that its sequence is closely related to that of the genes encoding ribosomal proteins K37, KD4 and K5 ofSchizosaccharomyces pombe. ‘mRNA13’ also behaves like other mRNAs encoding ribosomal proteins, in that its abundance increases sharply when glucose is added to cells grown on ethanol (nutrient-up shift), and declines when cells are subjected to a mild heat-shock. Unspliced mRNA13 accumulates when cells bearing a temperature-sensitive splicing mutation are grown at the restrictive temperature. The gene(s) corresponding to cDNA13, like other ribosomal protein genes ofS. cerevisiae, thus contain an intron. Southern blot analysis indicates the presence of two separate loci related to cDNA13 in theS. cerevisiae genome. From the sequence of one of these, a complete polypeptide sequence was deduced. The first 40 amino acids are identical to those of YL6, aS. cerevisiae ribosomal protein characterised only by N-terminal protein sequence analysis. There is clear evidence within the genomic sequence for the predicted intron, and for elements similar to those that regulate expression of otherS. cerevisiae ribosomal protein genes.  相似文献   

16.
17.
From marine mud flats a very thin, comma- or spiral-shaped bacterium was isolated. The new organism was an obligately chemolithotrophic sulfur bacterium. Its physiology was found to be essentially similar to that ofThiobacillus thioparus. Because of the spirillum-like appearance it was proposed to classify this bacterium into a new genusThiomicrospira, with the species nameTms. pelophila. Tms. pelophila and a marineT. thioparus, which was isolated from the same mud, occupy different niches in this habitat.Tms. pelophila has a remarkable sulfide-tolerance as compared withT. thioparus. This property could be used for the specific enrichment ofTms. pelophila. The organism was also readily isolated in pure culture by filtering mud suspensions through a 0.22 Μm membrane filter.  相似文献   

18.
Plasmid pAL618 contains the genetic determinants for H2 uptake (hup) fromRhizobium leguminosarum bv.viciae, including a cluster of 17 genes namedhupSLCDEFGHIJK-hypABFCDE. A 1.7-kb segment of insert DNA located downstream ofhypE has now been sequenced, thus completing the sequence of the 20 441-bp insert DNA in plasmid pAL618. An open reading frame (designatedhypX) encoding a protein with a calculated Mr of 62 300 that exhibits extensive sequence similarity with HoxX fromAlcaligenes eutrophus (52% identity) andBradyrhizobium japonicum (57% identity) was identified 10 bp downstream ofhypE. Nodule bacteroids produced byhypX mutants in pea (Pisum sativum L.) plants grown at optimal nickel concentrations (100 µM) for hydrogenase expression, exhibited less than 5% of the wild-type levels of hydrogenase activity. These bacteroids contained wild-type levels of mRNA from hydrogenase structural genes (hupSL) but accumulated large amounts of the immature form of HupL protein. The Hup-deficient mutants were complemented for normal hydrogenase activity and nickel-dependent maturation of HupL by ahypX gene provided in trans. From expression analysis ofhypX-lacZ fusion genes, it appears thathypX gene is transcribed from the FnrN-dependenthyp promoter, thus placinghypX in thehyp operon (hypBFCDEX). Comparisons of the HypX/HoxX sequences with those in databases provided unexpected insights into their function in hydrogenase synthesis. Similarities were restricted to two distinct regions in the HypX/HoxX sequences. Region I, corresponding to a sequence conserved in N10-formyltetrahydrofolate-dependent enzymes involved in transferring one-carbon units (C1), was located in the N-terminal half of the protein, whereas region II, corresponding to a sequence conserved in enzymes of the enoyl-CoA hydratase/isomerase-family, was located in the C-terminal half. These similarities strongly suggest that HypX/HoxX have dual functions: binding of the C1 donor N10-formyl-tetrahydrofolate and transfer of the C1 to an unknown substrate, and catalysis of a reaction involving polarization of the C=O bond of an X-CO-SCoA substrate. These results also suggest the involvement of a small organic molecule, possibly synthesized with the participation of an X-CO-SCoA precursor and of formyl groups, in the synthesis of the metal-containing active centre of hydrogenase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号