首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MutY specifies a DNA glycosylase that removes adenines unnaturally paired with various bases including oxidized derivatives of guanine, such as 7,8-dihydro-8-oxoguanine (8-oxoG). The rate of mutation in starvedEscherichia coli cells is markedly raised inmutY mutants defective in this glycosylase. As predicted, the mutations produced include G to T transversions. Bacteria carryingmutM orfpg-1 mutations (defective in Fapy glycosylase, which removes oxidized guanine residues such as 8-oxoG) show little or no enhancement of mutation under starvation conditions. When present together withmutY, however,mutM clearly further enhances the rate of mutation in starved cells. Plasmids resulting in overproduction of MutY or Fapy glycosylases reduce the rate of mutation in starved cells. We conclude that, in non-growing bacteria, oxidized guanine residues, including 8-oxoG, constitute an important component of spontaneous mutation. Addition of catalase to the plates did not reduce the mutant yield, indicating that extracellular hydrogen peroxide is not involved in the production of the premutational damage. Singlet oxygen, known to give rise to 8-oxoG, may be the ultimate oxidative species.  相似文献   

2.
The spectrum of DNA damage caused by reactive oxygen species includes a wide variety of modifications of purine and pyrimidine bases. Among these modified bases, 7,8-dihydro-8-oxoguanine (8-oxoG) is an important mutagenic lesion. Base excision repair is a critical mechanism for preventing mutations by removing the oxidative lesion from the DNA. That the spontaneous mutation frequency of the Escherichia coli mutT mutant is much higher than that of the mutM or mutY mutant indicates a significant potential for mutation due to 8-oxoG incorporation opposite A and G during DNA replication. In fact, the removal of A and G in such a situation by MutY protein would fix rather than prevent mutation. This suggests the need for differential removal of 8-oxoG when incorporated into DNA, versus being generated in situ. In this study we demonstrate that E.coli Nth protein (endonuclease III) has an 8-oxoG DNA glycosylase/AP lyase activity which removes 8-oxoG preferentially from 8-oxoG/G mispairs. The MutM and Nei proteins are also capable of removing 8-oxoG from mispairs. The frequency of spontaneous G:C→C:G transversions was significantly increased in E.coli CC103mutMnthnei mutants compared with wild-type, mutM, nth, nei, mutMnei, mutMnth and nthnei strains. From these results it is concluded that Nth protein, together with the MutM and Nei proteins, is involved in the repair of 8-oxoG when it is incorporated opposite G. Furthermore, we found that human hNTH1 protein, a homolog of E.coli Nth protein, has similar DNA glycosylase/AP lyase activity that removes 8-oxoG from 8-oxoG/G mispairs.  相似文献   

3.
Li L  Lu AL 《Nucleic acids research》2003,31(12):3038-3049
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20°C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches.  相似文献   

4.
The base excision repair DNA glycosylase MutY homolog (MYH) is responsible for removing adenines misincorporated into DNA opposite guanine or 7,8-dihydro-8-oxo-guanine (8-oxoG), thereby preventing G:C to T:A mutations. Biallelic germline mutations in the human MYH gene predispose individuals to multiple colorectal adenomas and carcinoma. We have recently demonstrated that hMYH interacts with the mismatch repair protein hMSH6, and that the hMSH2/hMSH6 (hMutSα) heterodimer stimulates hMYH activity. Here, we characterize the functional effect of two missense mutations (R227W and V232F) associated with hMYH polyposis that lie within, or adjacent to, the putative hMSH6 binding domain. Neither missense mutation affects the physical interaction between hMYH and hMSH6. However, hMYH(R227W) has a severe defect in A/8-oxoG binding and glycosylase activities, while hMYH(V232F) has reduced A/8-oxoG binding and glycosylase activities. The glycosylase activity of the V232F mutant can be partially stimulated by hMutSα but cannot be restored to the wild-type level. Both mutants also fail to complement mutY-deficiency in Escherichia coli. These data define the pathogenic mechanisms underlying two further hMYH polyposis-associated mutations.  相似文献   

5.
In the bacterium Escherichia coli, oxidized pyrimidines are removed by two DNA glycosylases, endonuclease III and endonuclease VIII (endo VIII), encoded by the nth and nei genes, respectively. Double mutants lacking both of these activities exhibit a high spontaneous mutation frequency, and here we show that all of the mutations observed in the double mutants were G:C-->A:T transitions; no thymine mutations were found. These findings are in agreement with the preponderance of C-->T transitions in the oxidative and spontaneous mutational databases. The major oxidized purine lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is processed by two DNA glycosylases, formamidopyrimidine DNA glycosylase (Fpg), which removes 8-oxoG opposite C, and MutY DNA glycosylase, which removes misincorporated A opposite 8-oxoG. The high spontaneous mutation frequency previously observed in fpg mutY double mutants was significantly enhanced by the addition of the nei mutation, suggesting an overlap in the substrate specificities between endo VIII and Fpg/MutY. When the mutational specificity was examined, all of the mutations observed were G:C-->T:A transversions, indicating that in the absence of Fpg and MutY, endo VIII serves as a backup activity to remove 8-oxoG. This was confirmed by showing that, indeed, endo VIII can recognize 8-oxoG in vitro.  相似文献   

6.
Li X  Lu AL 《Nucleic acids research》2000,28(23):4593-4603
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, A/C or G/8-oxoG mismatches. A truncated form of MutY (M25, residues 1–226) retains catalytic activity; however, the C-terminal domain of MutY is required for specific binding to the 8-oxoG and is critical for mutation avoidance of oxidative damage. Using alkylation interference experiments, the determinants of the truncated and intact MutY were compared on A/8-oxoG-containing DNA. Several purines within the proximity of mismatched A/8-oxoG show differential contact by the truncated and intact MutY. Most importantly, methylation at the N7 position of the mismatched 8-oxoG and the N3 position of mismatched A interfere with intact MutY but not with M25 binding. The electrostatic contacts of MutY and M25 with the A/8-oxoG-containing DNA substrates are drastically different as shown by ethylation interference experiments. Five consecutive phosphate groups surrounding the 8-oxoG (one on the 3′ side and four on the 5′ side) interact with MutY but not with M25. The activities of the truncated and intact MutY are modulated differently by two minor groove-binding drugs, distamycin A and Hoechst 33258. Both distamycin A and Hoechst 33258 can inhibit, to a similar extent, the binding and glycosylase activities of MutY and M25 on A/G mismatch. However, binding and glycosylase activities on A/8-oxoG mismatch of intact MutY are inhibited to a lesser degree than those of M25. Overall, these results suggest that the C-terminal domain of MutY specifies additional contact sites on A/GO-containing DNA that are not found in MutY–A/G and M25–A/8-oxoG interactions.  相似文献   

7.
Oxidative damage to guanine in DNA results in the formation of 8-oxoguanine, which has been shown to induce G → T transversions targeted to this site. The mutagenicity of this lesion was studied in several mutator strains of Escherichia coli, using single-stranded DNA containing a single 8-oxoguanine residue. The frequencies of targeted G → T transversions increased markedly in mutY strains, while this mutagenic event was not affected in mutM or mutS strains. Introdution of a mutM mutation into a mutY strain caused a somewhat higher frequency of G → T transversions than that in the mutY strain and the effect of a mutS mutation was marginal. We conclude that the mutY gene plays a crucial role in preventing targeted G → T mutations derived from misreplication of the 8-oxoguanine-containing template DNA.  相似文献   

8.
Parker A  Gu Y  Lu AL 《Nucleic acids research》2000,28(17):3206-3215
A protein homologous to the Escherichia coli MutY glycosylase, referred to as mtMYH, has been purified from calf liver mitochondria. SDS–polyacrylamide gel electrophoresis, western blot analysis as well as gel filtration chromatography predicted the molecular mass of the purified calf mtMYH to be 35–40 kDa. Gel mobility shift analysis showed that the purified mtMYH formed specific binding complexes with A/8-oxoG, G/8-oxoG and T/8-oxoG, weakly with C/8-oxoG, but not with A/G and A/C mismatches. The purified mtMYH exhibited DNA glycosylase activity removing adenine mispaired with G, C or 8-oxoG and weakly removing guanine mispaired with 8-oxoG. The mtMYH glycosylase activity was insensitive to high concentrations of NaCl and EDTA. The purified mtMYH cross-reacted with antibodies against both intact MutY and a peptide of human MutY homolog (hMYH). DNA glycosylase activity of mtMYH was inhibited by anti-MutY antibodies but not by anti-hMYH peptide antibodies. Together with the previously described mitochondrial MutT homolog (MTH1) and 8-oxoG glycosylase (OGG1, a functional MutM homolog), mtMYH can protect mitochondrial DNA from the mutagenic effects of 8-oxoG.  相似文献   

9.
In Escherichia coli, MutM (8-oxoG DNA glycosylase/lyase or Fpg protein), MutY (adenine DNA glycosylase) and MutT (8-oxodGTPase) function cooperatively to prevent mutation due to 7, 8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic oxidative DNA adduct. MutM activity has been demonstrated to be induced by oxidative stress. Its regulation is under the negative control of the global regulatory genes, fur, fnr and arcA. However, interestingly the presence of MutY increases the mutation frequency in mutT- background because of MutY removes adenine (A) from 8-oxoG:A which arises from the misincorporation of 8-oxoG against A during DNA replication. Accordingly we hypothesized that the response of MutY to oxidative stress is opposite to that of MutM and compared the regulation of MutY activity with MutM under various oxidative stimuli. Unlike MutM, MutY activity was reduced by oxidative stress. Its activity was reduced to 30% of that of the control when E. coli was treated with paraquat (0.5 mM) or H2O2 (0.1 mM) and induced under anaerobic conditions to more than twice that observed under aerobic conditions. The reduced mRNA level of MutY coincided with its reduced activity by paraquat treatment. Also, the increased activity of MutY in anaerobic conditions was reduced further in E. coli strains with mutations in fur, fnr and arcA and the maximum reduction in activity was when all mutations were present in combination, indicating that MutY is under the positive control of these regulatory genes. Therefore, the down-regulation of MutY suggests that there has been complementary mechanism for its mutagenic activity under special conditions. Moreover, the efficacy of anti-mutagenic action should be enhanced by the reciprocal co-regulation of MutM.  相似文献   

10.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, or A/C mismatches and also has a weak guanine glycosylase activity on G/8-oxoG-containing DNA. The N-terminal domain of MutY, residues 1-226, has been shown to retain catalytic activity. Substrate binding, glycosylase, and Schiff base intermediate formation activities of the truncated and intact MutY were compared. MutY has high binding affinity with 8-oxoG when mispaired with A, G, T, C, or inosine. The truncated protein has more than 18-fold lower affinities for binding various 8-oxoG-containing mismatches when compared with intact MutY. MutY catalytic activity toward A/8-oxoG-containing DNA is much faster than that on A/G-containing DNA whereas deletion of the C-terminal domain reduces its catalytic preference for A/8-oxoG-DNA over A/G-DNA. MutY exerts more inhibition on the catalytic activity of MutM (Fpg) protein than does truncated MutY. The tight binding of MutY with GO mispaired with T, G, and apurinic/apyrimidinic sites may be involved in the regulation of MutM activity. An E. coli mutY strain that produces an N-terminal 249-residue truncated MutY confers a mutator phenotype. These findings strongly suggest that the C-terminal domain of MutY determines the 8-oxoG specificity and is crucial for mutation avoidance by oxidative damage.  相似文献   

11.
Low rates of spontaneous G:C-->C:G transversions would be achieved not only by the correction of base mismatches during DNA replication but also by the prevention and removal of oxidative base damage in DNA. Escherichia coli must have several pathways to repair such mismatches and DNA modifications. In this study, we attempted to identify mutator loci leading to G:C-->C:G transversions in E.coli. The strain CC103 carrying a specific mutation in lacZ was mutagenized by random miniTn 10 insertion mutagenesis. In this strain, only the G:C-->C:G change can revert the glutamic acid at codon 461, which is essential for sufficient beta-galactosidase activity to allow growth on lactose. Mutator strains were detected as colonies with significantly increased rates of papillae formation on glucose minimal plates containing P-Gal and X-Gal. We screened approximately 40 000 colonies and selected several mutator strains. The strain GC39 showed the highest mutation rate to Lac+. The gene responsible for the mutator phenotypes, mut39 , was mapped at around 67 min on the E.coli chromosome. The sequencing of the miniTn 10 -flanking DNA region revealed that the mut39 was identical to the mutY gene of E.coli. The plasmid carrying the mutY + gene reduced spontaneous G:C-->T:A and G:C-->C:G mutations in both mutY and mut39 strains. Purified MutY protein bound to the oligonucleotides containing 7,8-dihydro-8-oxo-guanine (8-oxoG):G and 8-oxoG:A. Furthermore, we found that the MutY protein had a DNA glycosylase activity which removes unmodified guanine from the 8-oxoG:G mispair. These results demonstrate that the MutY protein prevents the generation of G:C-->C:G transversions by removing guanine from the 8-oxoG:G mispair in E.coli.  相似文献   

12.
8-Oxoguanine (8-oxoG), induced by reactive oxygen species (ROS) and ionizing radiation, is arguably the most important mutagenic lesion in DNA. This oxidized base, because of its mispairing with A, induces GC-->TA transversion mutations often observed spontaneously in tumor cells. The human cDNA encoding the repair enzyme 8-oxoG-DNA glycosylase (OGG-1) has recently been cloned, however, its activity was never detected in cells. Here we show that the apparent lack of this activity could be due to the presence of an 8-oxoG-specific DNA binding protein. Moreover, we demonstrate the presence of two antigenically distinct OGG activities with an identical reaction mechanism in human cell (HeLa) extracts. The 38 kDa OGG-1, identical to the cloned enzyme, cleaves 8-oxoG when paired with cytosine, thymine and guanine but not adenine in DNA. In contrast, the newly discovered 36 kDa OGG-2 prefers 8-oxoG paired with G and A. We propose that OGG-1 and OGG-2 have distinct antimutagenic functions in vivo . OGG-1 prevents mutation by removing 8-oxoG formed in DNA in situ and paired with C, while OGG-2 removes 8-oxoG that is incorporated opposite A in DNA from ROS-induced 8-oxodGTP. We predict that OGG-2 specifically removes such 8-oxoG residues only from the nascent strand, possibly by utilizing the same mechanism as the DNA mismatch repair pathway.  相似文献   

13.
The modified base 7,8-dihydro-8-oxo-guanine (8-oxoG) is one of the most stable deleterious products of oxidative DNA damage because it mispairs with adenine during DNA replication. In the fission yeast Schizosaccharomyces pombe, the MutY homolog (SpMYH) is responsible for removing misincorporated adenines from A/8-oxoG or A/G mismatches and thus preventing G:C to T:A mutations. In order to study the functional role of SpMYH, an SpMYH knockout strain was constructed. The SpMYH knockout strain, which does not express SpMYH and has no A/8-oxoG glycosylase activity, displays a 36-fold higher frequency of spontaneous mutations than the wild type strain. Disruption of SpMYH causes increased sensitivity to H2O2 but not to UV-irradiation. Expression of SpMYH in the mutant cells restores the adenine glycosylase activity, reduces the mutation frequency, and elevates the resistance to H2O2. Asp172 of SpMYH is conserved in a helix-hairpin-helix superfamily of glycosylases. The SpMYHA strain expressing D172N SpMYH retained the mutator phenotype. Moreover, when D172N mutant SpMYH was expressed in the wild-type cells, the mutation frequency observed was even higher than that of the parental strains. Thus, a mutant SpMYH that retains substrate-binding activity but is defective in glycosylase activity exhibits a dominant negative effect. This is the first demonstration that a MutY homolog plays an important role in protecting cells against oxidative DNA damage in eukaryotes.  相似文献   

14.
Chromosomal rearrangements and base substitutions contribute to the large intraspecies genetic diversity of Helicobacter pylori. Here we explored the base excision repair pathway for the highly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), a ubiquitous form of oxidized guanine. In most organisms, 8-oxoG is removed by a specific DNA glycosylase (Fpg in bacteria or OGG1 in eukaryotes). In the case where replication of the lesion yields an A/8-oxoG base pair, a second DNA glycosylase (MutY) can excise the adenine and thus avoid the fixation of the mutation in the next round of replication. In a genetic screen for H. pylori genes complementing the hypermutator phenotype of an Escherichia coli fpg mutY strain, open reading frame HP0142, a putative MutY coding gene, was isolated. Besides its capacity to complement E. coli mutY strains, HP0142 expression resulted in a strong adenine DNA glycosylase activity in E. coli mutY extracts. Consistently, the purified protein also exhibited such an activity. Inactivation of HP0142 in H. pylori resulted in an increase in spontaneous mutation frequencies. An Mg-dependent AP (abasic site) endonuclease activity, potentially allowing the processing of the abasic site resulting from H. pylori MutY activity, was detected in H. pylori cell extracts. Disruption of HP1526, a putative xth homolog, confirmed that this gene is responsible for the AP endonuclease activity. The lack of evidence for an Fpg/OGG1 functional homolog is also discussed.  相似文献   

15.
In Escherichia coli, MutM (8-oxoG DNA glycosylase/lyase or Fpg protein), MutY (adenine DNA glycosylase) and MutT (8-oxodGTPase) function cooperatively to prevent mutation due to 7, 8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic oxidative DNA adduct. MutM activity has been demonstrated to be induced by oxidative stress. Its regulation is under the negative control of the global regulatory genes, fur, fnr and arcA. However, interestingly the presence of MutY increases the mutation frequency in mutT- background because of MutY removes adenine (A) from 8-oxoG:A which arises from the misincorporation of 8-oxoG against A during DNA replication. Accordingly we hypothesized that the response of MutY to oxidative stress is opposite to that of MutM and compared the regulation of MutY activity with MutM under various oxidative stimuli. Unlike MutM, MutY activity was reduced by oxidative stress. Its activity was reduced to 30% of that of the control when E. coli was treated with paraquat (0.5 mM) or H
2
O
2
(0.1 mM) and induced under anaerobic conditions to more than twice that observed under aerobic conditions. The reduced mRNA level of MutY coincided with its reduced activity by paraquat treatment. Also, the increased activity of MutY in anaerobic conditions was reduced further in E. coli strains with mutations in fur, fnr and arcA and the maximum reduction in activity was when all mutations were present in combination, indicating that MutY is under the positive control of these regulatory genes. Therefore, the down-regulation of MutY suggests that there has been complementary mechanism for its mutagenic activity under special conditions. Moreover, the efficacy of anti-mutagenic action should be enhanced by the reciprocal co-regulation of MutM.  相似文献   

16.
The MUTYH DNA glycosylase specifically removes adenine misincorporated by replicative polymerases opposite the oxidized purine 8-oxo-7,8-dihydroguanine (8-oxoG). A defective protein activity results in the accumulation of G > T transversions because of unrepaired 8-oxoG:A mismatches. In humans, MUTYH germline mutations are associated with a recessive form of familial adenomatous polyposis and colorectal cancer predisposition (MUTYH-associated polyposis, MAP). Here we studied the repair capacity of the MUTYH variants R171W, E466del, 137insIW, Y165C and G382D, identified in MAP patients. Following expression and purification of human proteins from a bacterial system, we investigated MUTYH incision capacity on an 8-oxoG:A substrate by standard glycosylase assays. For the first time, we employed the surface plasmon resonance (SPR) technology for real-time recording of the association/dissociation of wild-type and MUTYH variants from an 8-oxoG:A DNA substrate. When compared to the wild-type protein, R171W, E466del and Y165C variants showed a severe reduction in the binding affinity towards the substrate, while 137insIW and G382D mutants manifested only a slight decrease mainly due to a slower rate of association. This reduced binding was always associated with impairment of glycosylase activity, with adenine removal being totally abrogated in R171W, E466del and Y165C and only partially reduced in 137insIW and G382D. Our findings demonstrate that SPR analysis is suitable to identify defective enzymatic behaviour even when mutant proteins display minor alterations in substrate recognition.  相似文献   

17.
Bai H  Lu AL 《Journal of bacteriology》2007,189(3):902-910
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.  相似文献   

18.
Oxidative DNA damage can generate a variety of cytotoxic DNA lesions such as 8-oxoguanine (8-oxoG), which is one of the most mutagenic bases formed from oxidation of genomic DNA because 8-oxoG can readily mispair with either cytosine or adenine. If unrepaired, further replication of A.8-oxoG mispairs results in C:G to A:T transversions, a form of genomic instability. We reported previously that repair of A.8-oxoG mispairs was defective and that 8-oxoG levels were elevated in several microsatellite stable human colorectal cancer cell lines lacking MutY mutations (human MutY homolog gene, hmyh, MYH MutY homolog protein). In this report, we provide biochemical evidence that the defective repair of A.8-oxoG may be due, at least in part, to defective phosphorylation of the MutY protein in these cell lines. In MutY-defective cell extracts, but not extracts with functional MutY, A.8-oxoG repair was increased by incubation with protein kinases A and C (PKA and PKC) and caesin kinase II. Treatment of these defective cells, but not cells with functional MutY, with phorbol-12-myristate-13-acetate also increased the cellular A.8-oxoG repair activity and decreased the elevated 8-oxoG levels. We show that MutY is serine-phosphorylated in vitro by the action of PKC and in the MutY-defective cells by phorbol-12-myristate-13-acetate but that MutY is already phosphorylated at baseline in proficient cell lines. Finally, using antibody-isolated MutY protein, we show that MutY can be directly phosphorylated by PKC that directly increases the level of MutY catalyzed A.8-oxoG repair.  相似文献   

19.
    
Oxidative damage to guanine in DNA results in the formation of 8-oxoguanine, which has been shown to induce G T transversions targeted to this site. The mutagenicity of this lesion was studied in several mutator strains of Escherichia coli, using single-stranded DNA containing a single 8-oxoguanine residue. The frequencies of targeted G T transversions increased markedly in mutY strains, while this mutagenic event was not affected in mutM or mutS strains. Introdution of a mutM mutation into a mutY strain caused a somewhat higher frequency of G T transversions than that in the mutY strain and the effect of a mutS mutation was marginal. We conclude that the mutY gene plays a crucial role in preventing targeted G T mutations derived from misreplication of the 8-oxoguanine-containing template DNA.  相似文献   

20.
2-Hydroxy-2-deoxyadenosine triphosphate (2-OH-dATP), generated by the oxidation of dATP, can be misincorporated by DNA polymerases opposite guanine in template DNA during DNA replication, thus causing spontaneous mutagenesis. We demonstrated that mouse MUTYH (mMUTYH) has a DNA glycosylase activity excising not only adenine opposite 8-oxoguanine (8-oxoG) but also 2-hydroxyadenine (2-OH-A) opposite guanine, using purified recombinant thioredoxin-mMUTYH fusion protein. mMUTYH formed a stable complex with duplex oligonucleotides containing an adenine:8-oxoG pair, but the binding of mMUTYH to oligonucleotides containing a 2-OH-A:guanine pair was barely detectable, thus suggesting that mMUTYH recognizes and interacts with these two substrates in a different manner which may reflect the difference in the base excision repair process for each substrate. Mutant mMUTYH with G365D amino acid substitution, corresponding to a G382D germline mutation of human MUTYH found in familial adenomatous polyposis patients, almost completely retained its DNA glycosylase activity excising adenine opposite 8-oxoG; however, it possessed 1.5% of the wild-type activity excising 2-OH-A opposite guanine. Our results imply that the reduced repair capacity of the mutant hMUTYH(G382D), which inefficiently excises 2-OH-A opposite guanine, results in an increased occurrence of somatic G:C to T:A transversion mutations in the APC gene as well as tumorigenesis in the colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号