首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent fhy3 alleles links enhanced inhibition of hypocotyl elongation in response to red light with an arrhythmic pattern of hypocotyl elongation. Both alleles also show disrupted rhythmicity of central-clock and clock-output gene expression in constant red light. fhy3 exhibits aberrant phase advances under red light pulses during the subjective day. Release-from-light experiments demonstrate clock disruption in fhy3 during the early part of the subjective day in constant red light, suggesting that FHY3 is important in gating red light signaling for clock resetting. The FHY3 gating function appears crucial in the early part of the day for the maintenance of rhythmicity under these conditions. However, unlike previously described Arabidopsis gating mutants that gate all light signaling, gating of direct red light-induced gene expression in fhy3 is unaffected. FHY3 appears to be a novel gating factor, specifically in gating red light signaling to the clock during daytime.  相似文献   

3.
Biological clock components have been detected in many epithelial tissues of the digestive tract of mammals (oral mucosa, pancreas, and liver), suggesting the existence of peripheral circadian clocks that may be entrainable by food. Our aim was to investigate the expression of main peripheral clock genes in colonocytes of healthy humans and in human colon carcinoma cell lines. The presence of clock components was investigated in single intact colonic crypts isolated by chelation from the biopsies of 25 patients (free of any sign of colonic lesions) undergoing routine colonoscopy and in cell lines of human colon carcinoma (Caco2 and HT29 clone 19A). Per-1, per-2, and clock mRNA were detected by real-time RT-PCR. The three-dimensional distributions of PER-1, PER-2, CLOCK, and BMAL1 proteins were recorded along colonic crypts by immunofluorescent confocal imaging. We demonstrate the presence of per-1, per-2, and clock mRNA in samples prepared from colonic crypts of 5 patients and in all cell lines. We also demonstrate the presence of two circadian clock proteins, PER-1 and CLOCK, in human colonocytes on crypts isolated from 20 patients (15 patients for PER-1 and 6 for CLOCK) and in colon carcinoma cells. Establishing the presence of clock proteins in human colonic crypts is the first step toward the study of the regulation of the intestinal circadian clock by nutrients and feeding rhythms.  相似文献   

4.
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than in the morning. This diurnal variation is attributed to motivational, peripheral and central factors, and higher core and, possibly, muscle temperatures in the evening. This study investigated whether increasing morning rectal temperatures to evening resting values, by active or passive warm-ups, leads to muscle force production and power output becoming equal to evening values in motivated subjects. Ten healthy active males (mean ± SD: age, 21.2 ± 1.9 yrs; body mass, 75.4 ± 8 kg; height, 1.76 ± .06 m) completed the study, which was approved by the University Ethics Committee. The subjects were familiarized with the techniques and protocol and then completed four sessions (separated by at least 48 h): control morning (07:30 h) and evening (17:30 h) sessions (with an active 5-min warm-up) and then two further sessions at 07:30 h but proceeded by an extended active or passive warm-up to raise rectal temperature to evening values. These last two sessions were counterbalanced in order of administration. During each trial, three measures of handgrip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19 rad.s?1 through a 90° range of motion), and four measures of maximal voluntary contraction (MVC) on an isometric ergometer (utilizing the twitch-interpolation technique) were performed. Rectal and intra-aural temperatures, ratings of perceived exertion (RPE) and thermal comfort (TC) were measured. Measurements were made after the subjects had reclined for 30 min and after the warm-ups and prior to the measurement of handgrip and isokinetic and isometric ergometry. Muscle temperature was taken after the warm-up and immediately before the isokinetic and MVC measurements. Warm-ups were either active (cycle ergometer at 150 W) or passive (resting in a room at 35°C, relative humidity 45%). Data were analyzed using analysis of variance models with repeated measures. Rectal and intra-aural temperatures were higher at rest in the evening (.56°C and .74°C; p < .05) than in the morning, but there were no differences after the active or passive warm-ups, the subjects' ratings of thermal comfort reflecting this. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (~.31°C; p < .05). Grip strength, isokinetic knee flexion for peak torque and peak power at 1.05 rad.s?1, and knee extension for peak torque at 4.19 rad.s?1 all showed higher values in the evening. All other measures of strength or power showed a trend to be higher in the evening ( .10 > p > .05). There was no significant effect of active or passive warm-ups on any strength or power variable, and subjects reported maximal values for effort for each strength measure. In summary, effects of time of day were seen in some measures of muscle performance but, in this population of motivated subjects, there was no evidence that increasing morning rectal temperature to evening values by active or passive warm-up increased muscle strength to evening values. (Author correspondence: )  相似文献   

5.
6.
Aging alters numerous aspects of circadian biology, including the amplitude of rhythms generated by the suprachiasmatic nuclei (SCN) of the hypothalamus, the site of the central circadian pacemaker in mammals, and the response of the pacemaker to environmental stimuli such as light. Although previous studies have described molecular correlates of these behavioral changes, to date only 1 study in rats has attempted to determine if there are age-related changes in the expression of genes that comprise the circadian clock itself. We used in situ hybridization to examine the effects of age on the circadian pattern of expression of a subset of the genes that comprise the molecular machinery of the circadian clock in golden hamsters. Here we report that age alters the 24-h expression profile of Clock and its binding partner Bmal1 in the hamster SCN. There is no effect of age on the 24-h profile of either Per1 or Per2 when hamsters are housed in constant darkness. We also found that light pulses, which induce smaller phase shifts in old animals than in young, lead to decreased induction of Per1, but not of Per2, in the SCN of old hamsters.  相似文献   

7.
Evaluating individual circadian rhythm traits is crucial for understanding the human biological clock system. The present study reports characterization of physiological and molecular parameters in 13 healthy male subjects under a constant routine condition, where interfering factors were kept to minimum. We measured hormonal secretion levels and examined temporal expression profiles of circadian clock genes in peripheral leukocytes and beard hair follicle cells. All 13 subjects had prominent daily rhythms in melatonin and cortisol secretion. Significant circadian rhythmicity was found for PER1 in 9 subjects, PER2 in 3 subjects, PER3 in all 13 subjects, and BMAL1 in 8 subjects in leukocytes. Additionally, significant circadian rhythmicity was found for PER1 in 5 of 8 subjects tested, PER2 in 2 subjects, PER3 in 6 subjects, and BMAL1 in 3 subjects in beard hair follicle cells. The phase of PER1 and PER3 rhythms in leukocytes correlated significantly with that of physiological rhythms. Our results demonstrate that leukocytes and beard hair follicle cells possess an endogenous circadian clock and suggest that PER1 and PER3 expression would be appropriate biomarkers and hair follicle cells could be a useful tissue source for the evaluation of biological clock traits in individuals.  相似文献   

8.
Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P < 0.0001) in CLL patients as compared to healthy controls. When expression of these genes was compared between shift-workers and non-shift-workers within the CLL group, the expression was found more aberrant in shift-workers as compared to non-shift-workers. However, this difference was found statistically significant for Myc and Cyclin D1 only (P < 0.05). Serum melatonin levels were found significantly low (P < 0.0001) in CLL subjects as compared to healthy controls whereas melatonin levels were found still lower in shift-workers as compared to non-shift-workers within CLL group (P < 0.01). Our results suggest that aberrant expression of circadian clock genes can lead to aberrant expression of their downstream targets that are involved in cell proliferation and apoptosis and hence may result in manifestation of CLL. Moreover, shift-work and low melatonin levels may also contribute in etiology of CLL by further perturbing of circadian clock.  相似文献   

9.
Functional involvement of a circadian clock in photoperiodism for measuring the length of day or night had been proposed more than 70 years ago, and various physiological experiments have supported the idea. However, the molecular basis of a circadian clock has remained veiled in insects. Nevertheless, our knowledge of the functional elements of a circadian clock governing circadian rhythmicity has advanced rapidly. Since both circadian rhythms and photoperiodism depend on the daily cycles of environmental changes, it is easy to assume that the same clock elements are involved in both processes. Recently, the RNA interference (RNAi) technique clarified that the molecular machinery of a circadian clock governing photoperiodism is identical to that governing circadian rhythmicity. Here, I review the theoretical background of photoperiodic responses incorporating a circadian clock(s) and recent progress on the molecular clockwork involved in photoperiodism in the bean bug Riptortus pedestris and other insect species. I have focused on the intense controversy regarding the involvement of a circadian clock in insect photoperiodism.  相似文献   

10.
Nuclear receptor expression links the circadian clock to metabolism   总被引:16,自引:0,他引:16  
Yang X  Downes M  Yu RT  Bookout AL  He W  Straume M  Mangelsdorf DJ  Evans RM 《Cell》2006,126(4):801-810
As sensors for fat-soluble hormones and dietary lipids, oscillations in nuclear receptor (NR) expression in key metabolic tissues may contribute to circadian entrainment of nutrient and energy metabolism. Surveying the diurnal expression profiles of all 49 mouse nuclear receptors in white and brown adipose tissue, liver, and skeletal muscle revealed that of the 45 NRs expressed, 25 are in a rhythmic cycle and 3 exhibit a single transient pulse of expression 4 hr into the light cycle. While thyroid hormones are generally constant, we find that TRalpha and beta dramatically cycle, suggesting that fundamental concepts such as "basal metabolism" may require reexamination. The dynamic but coordinated changes in nuclear receptor expression, along with their key target genes, offers a logical explanation for known cyclic behavior of lipid and glucose metabolism and suggests novel roles for endocrine and orphan receptors in coupling the peripheral circadian clock to divergent metabolic outputs.  相似文献   

11.
12.
Sleep and Biological Rhythms - A high-density oligonucleotide probe array (GeneChip) has been used to learn how gene expression is globally regulated by the circadian clock mechanism. Here I review...  相似文献   

13.
昆虫钟基因研究进展   总被引:1,自引:0,他引:1  
昆虫进化形成了内在的生物钟机制以协调行为、生理及代谢节律与外部环境信号同步,从而更有效地利用资源并获得适应性优势。行为、生理及代谢昼夜调控的协调对于昆虫有效应对可预见的生理上的挑战至关重要。生化过程和代谢变化与外部环境的昼夜节律同步性受基因表达的控制,钟基因在昆虫的重要生理过程如中枢及外围生物钟机制、光周期信号传导、光周期介导的外围组织调控、代谢以及免疫中发挥着重要作用。根据信号转导过程中的作用,昆虫钟基因分为3类——信号输入基因、信号震荡起搏器和信号输出基因,它们通过相互作用形成了复杂的转录-翻译反馈回路并参与调控昆虫昼夜节律和光周期事件。本文针对昆虫钟基因的鉴定、分类和功能,作用分子机制以及研究方法和挑战等方面作了总结,并展望了昆虫钟基因未来的研究方向,这将为昆虫钟基因的进一步功能研究及开发利用提供信息参考。  相似文献   

14.
The mammalian circadian clock   总被引:12,自引:0,他引:12  
Organisms populating the earth are under the steady influence of daily and seasonal changes resulting from the planet's rotation and orbit around the sun. This periodic pattern most prominently manifested by the light-dark cycle has led to the establishment of endogenous circadian timing systems that synchronize biological functions to the environment. The mammalian circadian system is composed of many individual, tissue-specific clocks. To generate coherent physiological and behavioral responses, the phases of this multitude of clocks are orchestrated by the master circadian pacemaker residing in the suprachiasmatic nuclei of the brain. Genetic, biochemical and genomic approaches have led to major advances in understanding the molecular and cellular basis of mammalian circadian clock components and mechanisms.  相似文献   

15.
Clines in clock genes: fine-tuning circadian rhythms to the environment   总被引:2,自引:0,他引:2  
The dissection of the circadian clock into its molecular components represents the most striking and well-studied example of a gene regulatory network underlying a complex behavioural trait. By contrast, the evolutionary analysis of the clock has developed more slowly. Here we review studies that have surveyed intraspecific clock gene variation over large geographical areas and have discovered latitudinal clines in gene frequencies. Such spatial patterns traditionally suggest that natural selection shapes genetic variation, but it is equally possible that population history, or a mixture of demography and selection, could contribute to the clines. We discuss how population genetics, together with functional assays, can illuminate these possible cases of natural selection in Drosophila clock genes.  相似文献   

16.
Exploitation of heterosis in rice(Oryza sativa L.) has contributed greatly to global food security.In this study,we generated three sets of reciprocal F1 hybrids of indica and japonica subspecies to evaluate the relationship between yield heterosis and the circadian clock.There were no differences in trait performance or heterosis between the reciprocal hybrids,indicating no maternal effects on heterosis.The indica-indica and indica-japonica reciprocal F1 hybrids exhibited pronounced heterosis for chlorophyll and starch content in leaves and for grain yield/biomass.In contrast,the japonica-japonica F1 hybrids showed low heterosis.The three circadian clock genes investigated expressed in an above-high-parent pattern(AHP)at seedling stage in all the hybrids.The five genes downstream of the circadian clock,and involved in chlorophyll and starch metabolic pathways,were expressed in AHP in hybrids with strong better-parent heterosis(BPH).Similarly,three of these Research Arfive genes in the japonica-japonica F1 hybrids showing low BPH were expressed in positive overdominance,but the other two genes were expressed in additive or negative overdominance.These results indicated that the expression patterns of circadian clock genes and their downstream genes are associated with heterosis,which suggests that the circadian rhythm pathway may be related to heterosis in rice.  相似文献   

17.
18.
Most physiological and biological processes are regulated by endogenous circadian rhythms under the control of both a master clock, which acts systemically and individual cellular clocks, which act at the single cell level. The cellular clock is based on a network of core clock genes, which drive the circadian expression of non-clock genes involved in many cellular processes. Circadian deregulation of gene expression has emerged to be as important as deregulation of estrogen signaling in breast tumorigenesis. Whether there is a mutual deregulation of circadian and hormone signaling is the question that we address in this study. Here we show that, upon entrainment by serum shock, cultured human mammary epithelial cells maintain an inner circadian oscillator, with key clock genes oscillating in a circadian fashion. In the same cells, the expression of the estrogen receptor α (ER A) gene also oscillates in a circadian fashion. In contrast, ER A-positive and -negative breast cancer epithelial cells show disruption of the inner clock. Further, ER A-positive breast cancer cells do not display circadian oscillation of ER A expression. Our findings suggest that estrogen signaling could be affected not only in ER A-negative breast cancer, but also in ER A-positive breast cancer due to lack of circadian availability of ER A. Entrainment of the inner clock of breast epithelial cells, by taking into consideration the biological time component, provides a novel tool to test mechanistically whether defective circadian mechanisms can affect hormone signaling relevant to breast cancer.  相似文献   

19.
Most physiological and biological processes are regulated by endogenous circadian rhythms under the control of both a master clock, which acts systemically and individual cellular clocks, which act at the single cell level. The cellular clock is based on a network of core clock genes, which drive the circadian expression of non-clock genes involved in many cellular processes. Circadian deregulation of gene expression has emerged to be as important as deregulation of estrogen signaling in breast tumorigenesis. Whether there is a mutual deregulation of circadian and hormone signaling is the question that we address in this study. Here we show that, upon entrainment by serum shock, cultured human mammary epithelial cells maintain an inner circadian oscillator, with key clock genes oscillating in a circadian fashion. In the same cells, the expression of the estrogen receptor α (ERA) gene also oscillates in a circadian fashion. In contrast, ERA-positive and -negative breast cancer epithelial cells show disruption of the inner clock. Further, ERA-positive breast cancer cells do not display circadian oscillation of ERA expression. Our findings suggest that estrogen signaling could be affected not only in ERA-negative breast cancer, but also in ERA-positive breast cancer due to lack of circadian availability of ERA. Entrainment of the inner clock of breast epithelial cells, by taking into consideration the biological time component, provides a novel tool to test mechanistically whether defective circadian mechanisms can affect hormone signaling relevant to breast cancer.Key words: circadian rhythm, clock genes, estrogen receptor alpha (ERA), breast cancer cells, entrainment, serum shock  相似文献   

20.
A circadian clock, with physiological characteristics similar to those of eukaryotes, functions in the photosynthetic prokaryote, cyanobacteria. The molecular mechanism of this clock has been efficiently dissected using a luciferase reporter gene that reports the status of the clock. A circadian clock gene cluster, kaiABC, has been cloned via rhythm mutants of cyanobacterium, Synechococcus, and many clock mutations mapped to the three kai genes. Although kai genes do not share any homology with clock genes so far identified in eukaryotes, analysis of their expression suggests that a negative feedback control of kaiC expression by KaiC generates the circadian oscillation and that KaiA functions as a positive factor to sustain this oscillation. BioEssays 22:10-15, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号