首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and efficient procedure for the construction of secreted fusion proteins inEscherichia coli is described that uses a new minitransposon, termed TnhlyAs, carrying the secretion signal (HlyAs) ofE. coli hemolysin (HlyA). This transposon permits the generation of random gene fusions encoding proteins that carry the HlyAs at their C-termini. For the construction of model gene fusions we usedlacZ, encoding the cytoplasmic-galactosidase (-Gal), andphoA, encoding the periplasmic alkaline phosphatase, as target genes. Our data suggest that all-Gal-HlyAs fusion proteins generated are secreted, albeit with varying efficiencies, by the HlyB/HlyD/TolC hemolysin secretion machinery under Sec-proficient conditions. In contrast, the PhoA-HlyAs fusion proteins are efficiently secreted in asecA mutant strain only under SecA-deficient conditions.  相似文献   

2.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5′ end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

3.
We describe the construction of TnFuZ, a genetic tool for the discovery and mutagenesis of proteins exported from gram-positive bacteria. This tool combines a transposable element (Tn4001) of broad host range in gram-positive bacteria and an alkaline phosphatase gene (phoZ) derived from a gram-positive bacterium that has been modified by removal of the region encoding its export signal. Mutagenesis of Streptococcus pyogenes with TnFuZ (“FuZ” stands for fusions to phoZ) identified genes encoding secreted proteins whose expression was enhanced during growth in an aerobic environment. Thus, TnFuZ should be valuable for analysis of protein secretion, gene regulation, and virulence in gram-positive bacteria.

  相似文献   

4.
《ImmunoMethods》1993,2(1):79-92
This article describes expression systems based on staphylococcal protein A (SpA) and streptococcal protein G (SpG) which constitute attractive alternatives for the design and production of fusion proteins containing immunogenic structures. A dual expression system that allows the choice between two fusion partners, two synthetic IgG-binding domains (ZZ) of SpA and the serum albumin-binding region BB of SpG, was developed. Genes encoding antigens are expressed in Escherichia coli in parallel as fusions to ZZ and BB and the produced fusion proteins are affinity-purified on human IgG (ZZ fusions) or human serum albumin (BB fusions). The possibility of using ZZ fusions for immunization and the corresponding BB fusions for analysis of the induced immune responses provides a convenient strategy for the generation and analysis of immune responses to selected immunogenic structures. In addition, the cell surface-attaching regions of SpA have been utilized for cell surface display of heterologous antigens on the surface of the Gram-positive bacterium Staphylococcus xylosus. The dual expression system was used to express synthetic gene constructs and genomic gene fragments encoding immunogenic structures from blood-stage antigens of the malaria parasite Plasmodium falciparum. The fusion proteins produced were highly immunogenic in rabbits, mice, and monkeys and induced antibody and T-cell responses to the expressed antigens. Different applications of the SpA- and SpG-based expression systems are described and the immunological properties of the bacterial fusion partners SpA, ZZ, and BB are discussed.  相似文献   

5.
Summary Various gene fusions between the arginine permease and invertase have been constructed in order to obtain information about whether part of the CAN1 gene product can induce secretion of biologically active invertase missing its own signal sequence. A construction containing 30 N-terminal amino acid residues of the CAN1 gene product fused to invertase was not secreted. When the CAN1 portion was elongated to 477 or 560 amino acid residues, secretion of the fusion proteins was observed. A fusion lacking 59 amino acids at the amino-terminal end of the arginine permease was also secreted. These results indicate that the amino-terminal end of the arginine permease is neither sufficient nor essential for membrane insertion; instead this enzyme should contain an internal targeting sequence facilitating secretion. Some general implications on the biosynthesis and topology of membrane proteins are also discussed as well as the homology with histidine permease.  相似文献   

6.
Secreted yields of foreign proteins may be enhanced in filamentous fungi through the use of translational fusions in which the target protein is fused to an endogenous secreted carrier protein. The fused proteins are usually separated in vivo by cleavage of an engineered Kex2 endoprotease recognition site at the fusion junction. We have cloned the kexin-encoding gene of Aspergillus niger (kexB). We constructed strains that either overexpressed KexB or lacked a functional kexB gene. Kexin-specific activity doubled in membrane-protein fractions of the strain overexpressing KexB. In contrast, no kexin-specific activity was detected in the similar protein fractions of the kexB disruptant. Expression in this loss-of-function strain of a glucoamylase human interleukin-6 fusion protein with an engineered Kex2 dibasic cleavage site at the fusion junction resulted in secretion of unprocessed fusion protein. The results show that KexB is the endoproteolytic proprotein processing enzyme responsible for the processing of (engineered) dibasic cleavage sites in target proteins that are transported through the secretion pathway of A. niger.  相似文献   

7.
《Gene》1996,179(1):133-140
We describe the development of plasmid vectors carrying the expression sites, an hlyA cassette and the secretion genes of Escherichia coli hemolysin. These allow the synthesis and secretion of heterologous microbial antigens in E. coli and attenuated Salmonella aroA strains. Genes or gene fragments encoding microbial antigens are inserted in-frame into a residual part of the hlyA gene which essentially encodes the HlyA secretion signal (HlyA8). In general, the fused genes, carrying the hlyAs sequence at the 3' terminus, are efficiently expressed, and the synthesized antigens are secreted into the culture supernatant of the producing strain. Attenuated Salmonella strains synthesizing either HlyAs-fused listeriolysin or p60 of Listeria monocytogenes were constructed by this procedure and shown to provide protective immunity against L. monocytogenes in mice. The most effective protection was obtained when these microbial antigens were secreted by the attenuated Salmonella strains. We further present new approaches which may allow the application of this antigen-delivery system to any microbial antigen.  相似文献   

8.
The outer membrane protein, PagC, of Salmonella typhimurium was converted into a secreted protein by linking the 61-amino-acid long, C-terminal signal sequence of the E. coli hemolysin protein (HlyAS) to the mature PagC peptide. This PagC-HlyAS fusion protein was expressed and efficiently secreted into the culture supernatant by E. coli upon complementation with the hemolysin secretion proteins HlyB and HlyD. Polyclonal antibodies raised against this fusion protein not only recognized PagC in the membrane fraction of all salmonellae by Western blotting, but also reacted with proteins of smaller size in other gram-negative bacteria tested. A monoclonal antibody against the PagC-HlyAS fusion protein recognized only PagC in membrane fractions. The antibody-binding domain was determined using synthetic peptides derived from specific PagC domains. Sera from Salmonella-infected human patients and from a rabbit infected with S. typhimurium did not react with PagC in immunoblots, suggesting that PagC may not be recognized as a major antigen by the humoral immune system. Received: 16 August 1995/Received revision: 6 November 1995/Accepted: 10 November 1995  相似文献   

9.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5 end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

10.
We describe a new procedure allowing the generation and detection of immunogenic antigens from Helicobacter pylori via the hemolysin secretion apparatus of Escherichia coli. The gene (or gene fragment) encoding the H. pylori protein (or protein domain) is inserted in-frame into a residual portion of the hemolysin gene (hlyA), encoding the HlyA secretion signal (HlyA(s)). These fusion proteins are secreted efficiently by E. coli. This new approach allows the identification of immunodominant antigens by using sera derived from H. pylori-infected patients suffering from different gastroduodenal pathologies. Three immunodominant antigens bearing the ureB (urease B-subunit), flaA (flagellin A-subunit), and an unknown ORF (HP0888) encoding an E. coli FecE analogous protein fused to hlyA(s) were identified and characterized.  相似文献   

11.
12.
An in frame gene fusion containing the coding region for mature β-lactamase and the 3′-end of hylA encoding the haemolysin secretion signal, was constructed under the control of a lac promoter. The resulting 53 kDa hybrid protein was specifically secreted to the external medium in the presence of the haemolysin translocator proteins, HlyB and HlyD. The specific activity of the β-lactamase portion of the secreted protein (measured by the hydrolysis of penicillin G), approximately 1 U/μg protein, was close to that of authentic, purified TEM-β-lactamase. This is an important example of a hybrid protein that is enzymatically active, and secreted via the haemolysin pathway. Previous studies have indicated that haemolysin is secreted directly into the medium, bypassing the periplasm, to which β-lactamase is normally targeted. This study indicated, therefore, that normal folding of an active β-lactamase, can occur, at least when fused to the HlyA C-terminus, without the necessity of entering the periplasm. Despite the secretion of approximately 5 μg/ml levels of the active β-lactamase fusion into the medium, there was maximally only a 50% detectable increase in the LD50 for resistance to ampicillin at the individual cell level. This result suggests that, normally, resistance to ampicillin requires a high concentration of the enzyme close to killing targets, i.e. in the periplasm, in order to achieve significant levels of protection.  相似文献   

13.
Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest.  相似文献   

14.
Summary A fusion gene (ces-hlyA s) was constructed by ligating the genetic information for the C-terminal 60 amino acids (hlyA s) ofEscherichia coli hemolysin (H1yA) to the ces gene for a cholesterol esterase/lipase (CE) from aPseudomonas species. Part (about 30 %) of the expressed fusion protein CE-H1yAs was secreted inE. coli carryinghlyB andhlyD genes. Following the insertion between the reporter gene andhlyA s of a linker sequence that contains the information for potential cleavage sites for the outer membrane protease OmpT, two different fusion proteins (PhoA-H1yAs and CE-HlyAs) were shown to be cleaved by OmpT between the two parts during H1yB/H1yD-mediated secretion. Processed PhoA and CE accumulated in the supernatant. The efficiency of cleavage by OmpT was considerably improved by increasedompT gene dose. It was further shown that OmpT preferentially recognizes potential cleavage sites within the linker sequence.  相似文献   

15.
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 μg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.  相似文献   

16.
Escherichia coli maltose binding protein (MBP) is commonly used to promote the solubility of its fusion partners. To investigate the mechanism of solubility enhancement by MBP, we compared the properties of MBP fusion proteins refolded in vitro with those of the corresponding fusion proteins purified under native conditions. We fused five aggregation-prone passenger proteins to 3 different N-terminal tags: His6-MBP, His6-GST and His6. After purifying the 15 fusion proteins under denaturing conditions and refolding them by rapid dilution, we recovered far more of the soluble MBP fusion proteins than their GST- or His-tagged counterparts. Hence, we can reproduce the solubilizing activity of MBP in a simple in vitro system, indicating that no additional factors are required to mediate this effect. We assayed both the soluble fusion proteins and their TEV protease digestion products (i.e., with the N-terminal tag removed) for biological activity. Little or no activity was detected for some fusion proteins whereas others were quite active. When the MBP fusions proteins were purified from E. coli under native conditions they were all substantially active. These results indicate that the ability of MBP to promote the solubility of its fusion partners in vitro sometimes, but not always, results in their proper folding. We show that the folding of some passenger proteins is mediated by endogenous chaperones in vivo. Hence, MBP serves as a passive participant in the folding process; passenger proteins either fold spontaneously or with the assistance of chaperones.  相似文献   

17.
The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway.  相似文献   

18.
Summary Secretion of fusion proteins composed of cytoplasmic protein dihydrofolate reductase (DHFR) and the Escherichia coli -haemolysin (HlyA) C-terminal sequence was examined through the haemolysin secretion machinery of E. coli. DHFR of various lengths was combined with the HlyA C-terminal region, and both secretion and DHFR activity of the fusions were measured. The secretion was found to be inversely correlated with the intracellular DHFR activity. Moreover, when one amino acid (Ile155) in a -sheet of the DHFR C-terminal region was replaced with Lys, the enzymatically active DHFR fusion protein was secreted into the medium. We discuss the possibility of a relationship between folding and secretion of HlyA-fused protein in the HlyA secretion system. Correspondence to: H. Nakano  相似文献   

19.
Late embryogenesis abundant (LEA) proteins in organisms are closely associated with resistance to abiotic stresses. Here we characterized a rice LEA protein, OsLEA3-1, by bioinformatics analysis and heterologous expression in Escherichia coli. Bioinformatics analysis showed that OsLEA3-1 contains a 603-bp open reading frame encoding a putative polypeptide of 200 amino acids, which contains a “LEA_4” motif at positions 5–48 and belongs to a typical group 3 LEA. OsLEA3-1 polypeptide is rich in Ala, Lys, and Thr, but depleted in Cys, Pro, and Trp residues; and is strongly hydrophilic. Secondary structure prediction showed that OsLEA3-1 polypeptide contained an α-helical domain in positions 4-195 but not any β-sheet domain. OsLEA3-1 gene can express in shoot and root of germinating seeds, seedling, panicles, mature embryo, seed, and callus; and was also up-regulated by ultraviolet (UV), heat, cold, salt, and emergency drought. OsLEA3-1 gene was introduced into E. coli. A fusion protein of about 28.03 kDa was expressed in recombinant E. coli cells after the induction by isopropylthio-β-D-galactoside. Compared with control E. coli cells harbouring pET30a, the accumulation of the OsLEA3-1 fusion protein increased the tolerance of the E. coli recombinants under diverse abiotic stresses: high salinity, metal ions, hyperosmotic, heat, and UV radiation. The OsLEA3-1 has the ability to protect the lactate dehydrogenase activity under heating, drying, and MnCl2 treatment in vitro. The findings suggested that the OsLEA3-1 gene may contribute to the ability of adapting to stressful environments of plants.  相似文献   

20.

Background

Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase), were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST) at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D), and the other with five contiguous arginine residues (5R).

Results

Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP) that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc).

Conclusion

Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号