首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The architecture of a flower is tightly linked to the way a plant pollinates, making it one of the most physiologically and ecologically important traits of angiosperms. Floral organ development is proposed to be governed by the activity of three different classes of organ identity genes (the ABC model), and the expression of those genes are regulated by a number of meristem identity genes. Here we use a transgenetic strategy to elucidate the role of one floral meristem identify gene,LEAFY (LFY), in the evolution of floral organogenesis of a self pollinatorIdahoa scapigera and a obligatory out-crosserLeavenworthia crassa in the mustard family, Brassicaceae. By introducing theLFY genes from these two types of pollination habit into the genetic model speciesArabidopsis thaliana, we provide evidence that changes inLFY influenced flower architecture probably by controlling the downstream organ identity genes.  相似文献   

2.
3.
4.
5.
The MerR family of transcriptional regulators   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
The Lrp family of transcriptional regulators   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by directly repressing a group of flowering time genes, including SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1). In wild-type plants, these flowering time genes are normally downregulated in emerging floral meristems. In the absence of AP1, these genes are ectopically expressed, transforming floral meristems into shoot meristems. By post-translational activation of an AP1-GR fusion protein and chromatin immunoprecipitation assays, we further demonstrate the repression of these flowering time genes by induced AP1 activity and in vivo AP1 binding to the cis-regulatory regions of these genes. These findings indicate that once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes, thus preventing the continuation of the shoot developmental program.  相似文献   

10.
Proteins of the UBASH3/STS/TULA family recently emerged as potent regulators of cellular functions. They are characterized by a unique architecture, featuring at least three functional domains. One of them is a histidine phosphatase domain, which mediates the protein tyrosine phosphatase activity of these proteins. Recent studies demonstrated that UBASH3/STS/TULA‐family proteins play a key role in down‐regulating receptor‐mediated signal transduction and physiologic responses of T cells and platelets in vitro and in vivo. The Syk‐family protein tyrosine kinases Syk and Zap‐70 were identified as major targets of TULA‐2 in full agreement with the suppressive effect of this phosphatase in systems where Syk and Zap‐70 carry out the essential early steps of signal transduction. In spite of significant similarity between TULA and TULA‐2, there are also considerable functional differences between them. Thus, TULA‐2 is expressed ubiquitously in mammalian tissues and exhibits high phosphatase activity, whereas TULA is expressed specifically in lymphocytes and exhibits low phosphatase activity. However, TULA also functions as a down‐regulator of cellular responses, and therefore its role may be mediated by dephosphorylation of yet‐unknown substrates or by promoting T‐cell apoptosis (the latter activity is unique for this UBASH3/STS/TULA family member). The down‐regulatory role of TULA and TULA‐2 revealed in experimental systems is consistent with the recently discovered association of several autoimmune diseases with certain risk alleles encoding for these proteins. J. Cell. Physiol. 228: 43–49, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
During the course of flower development, floral homeotic genes are expressed in defined concentric regions of floral meristems called whorls. The SUPERMAN (SUP, also called FLO10) gene, which encodes a C2H2-type zinc finger protein, is involved in maintenance of the stamen/carpel whorl boundary (the boundary between whorl 3 and whorl 4) in Arabidopsis. Here, we show that the regulation of SUP expression in floral meristems is complex, consisting of two distinct phases, initiation and maintenance. The floral meristem identity gene LEAFY (LFY) plays a role in the initiation phase through at least two pathways, which differ from each other in the involvement of two homeotic genes, APETALA3 (AP3) and PISTILLATA (PI). AP3, PI, and another homeotic gene, AGAMOUS (AG), are further required for SUP expression in the later maintenance phase. Aside from these genes, there are other as yet unidentified genes that control both the temporal and spatial patterns of SUP expression in whorl 3 floral meristems. SUP appears to act transiently, probably functioning to trigger a genetic circuit that creates the correct position of the whorl 3/whorl 4 boundary.  相似文献   

13.
14.
15.
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.  相似文献   

16.
17.
Control of flowering and the regulation of plant architecture have been thoroughly investigated in a number of well-studied dicot plants such as Arabidopsis, Antirrhinum, and tobacco. However, in many important monocot seed crops, molecular information on plant reproduction is still limited. To investigate the regulation of meristem identity and the control of floral transition in perennial ryegrass (Lolium perenne) we isolated a ryegrass TERMINAL FLOWER1-like gene, LpTFL1, and characterized it for its function in ryegrass flower development. Perennial ryegrass requires a cold treatment of at least 12 weeks to induce flowering. During this period a decrease in LpTFL1 message was detected in the ryegrass apex. However, upon subsequent induction with elevated temperatures and long-day photoperiods, LpTFL1 message levels increased and reached a maximum when the ryegrass apex has formed visible spikelets. Arabidopsis plants overexpressing LpTFL1 were significantly delayed in flowering and exhibited dramatic changes in architecture such as extensive lateral branching, increased growth of all vegetative organs, and a highly increased trichome production. Furthermore, overexpression of LpTFL1 was able to complement the phenotype of the severe tfl1-14 mutant of Arabidopsis. Analysis of the LpTFL1 promoter fused to the UidA gene in Arabidopsis revealed that the promoter is active in axillary meristems, but not the apical meristem. Therefore, we suggest that LpTFL1 is a repressor of flowering and a controller of axillary meristem identity in ryegrass.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号