首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ThechiL gene product is involved in the light-independent synthesis of chlorophyll in photosynthetic bacteria, green algae and non-flowering plants. The chloroplast genome ofChlorella vulgaris strain C-27 contains the first example of a splitchiL gene, which is interrupted by a 951 bp group I intron in the coding region. In vitro synthesized pre-mRNA containing the entire intron and parts of the flanking exon sequences is able to efficiently self-splice in vitro in the presence of a divalent and a monovalent cation and GTP, to yield the ligated exons and other splicing intermediates characteristic of self-splicing group I introns. The 5 and 3 splice sites were confirmed by cDNA sequencing and the products of the splicing reaction were characterized by primer extension analysis. The absence of a significant ORF in the long P9 region (522 nt), separating the catalytic core from the 3 splice site, makes this intron different from the other known examples of group I introns. Guanosine-mediated attack at the 3 splice site and the presence of G-exchange reaction sites internal to the intron are some other properties demonstrated for the first time by an intron of a protein-coding plastid gene.  相似文献   

2.
Intron definition in splicing of small Drosophila introns.   总被引:4,自引:1,他引:3       下载免费PDF全文
Approximately half of the introns in Drosophila melanogaster are too small to function in a vertebrate and often lack the pyrimidine tract associated with vertebrate 3' splice sites. Here, we report the splicing and spliceosome assembly properties of two such introns: one with a pyrimidine-poor 3' splice site and one with a pyrimidine-rich 3' splice site. The pyrimidine-poor intron was absolutely dependent on its small size for in vivo and in vitro splicing and assembly. As such, it had properties reminiscent of those of yeast introns. The pyrimidine-rich intron had properties intermediate between those of yeasts and vertebrates. This 3' splice site directed assembly of ATP-dependent complexes when present as either an intron or exon and supported low levels of in vivo splicing of a moderate-length intron. We propose that splice sites can be recognized as pairs across either exons or introns, depending on which distance is shorter, and that a pyrimidine-rich region upstream of the 3' splice site facilitates the exon mode.  相似文献   

3.
In vivo and in vitro gene transfer experiments have suggested that the elements mediating intron recognition differ in mammalian, yeast and plant nuclei. Differences in the sequence dependencies, which also exist between dicotyledonous and monocotyledonous nuclei, have prevented some monocot introns from being spliced in dicot nuclei. To locate elements which modulate efficient recognition of introns in dicot nuclei, the maize Adh1 gene has been expressed in full-length and single intron constructs in Nicotiana benthamiana nuclei using an autonomously replicating plant expression vector. Quantitative PCR-Southern analyses indicate that the inefficient splicing of the maize Adh1 intron 1 (57% AU) in these dicot nuclei can be dramatically enhanced by increasing the degree of U1 snRNA complementarity at the 5′ splice site. This indicates that the 5′ splice site plays a significant role in defining the splicing efficiency of an intron in dicot nuclei and that, most importantly, the remainder of this monocot intron contains no elements which inhibit its accurate recognition in dicot nuclei. Deletions in intron 3 (66% AU) which effectively move the 3′ boundary between AU-rich intron and GC-rich exon sequences strongly activate a cryptic upstream splice site; those which do not reposition this boundary activate a downstream cryptic splice site. This suggests that 3′ splice site selection in dicot nuclei is extremely flexible and not dependent on strict sequence requirements but rather on the transition points between introns and exons. Our results are consistent with a model in which potential splice sites are selected if they are located upstream (5′ splice site) or downstream (3′ splice site) of AU transition points and not if they are embedded within AU-rich sequences.  相似文献   

4.
5.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

6.
Several plant genes have their first intron in the 5′ untranslated region (5′ UTR), and such 5′ UTR introns often show several biological functions, including the intron-mediated enhancement of protein expression through an increase of mRNA level (IME), intron-dependent spatial expression, and intron-mediated enhancement of translation. Here, we show another function of the 5′ UTR intron, i.e., the 5′ UTR intron-mediated enhancement of constitutive splicing. The NtFAD3 gene, which encodes a tobacco microsome ω-3 fatty acid desaturase, has a 552 nucleotide-long 5′ UTR intron (intron 1), and the other seven introns are located in the coding sequence. The splicing of the 5′ half region of the NtFAD3 was studied through an in vivo splicing assay using Arabidopsis leaf explants. The low splicing efficiency of intron 2 was much improved when the assay construct harbored intron 1. Deletion of intron 1 and the replacement of intron 1 to the NtFAD3 intron 8 decreased the splicing efficiency of intron 2. The splicing enhancers were redundant and dispersed in the 5′ splice site-proximal, 284-nucleotides region of intron 1. In addition, the interaction among the cis-elements, i.e., the splicing enhancers in the intron 1 and exon 2, were necessary for the efficient splicing of intron 2. The 5′ UTR intron-mediated constitutive splicing was partially inhibited when an SR-like protein, SR45, was deficient. These results indicated a novel function of the 5′ UTR intron, namely an enhancement of the constitutive splicing.  相似文献   

7.
The group I intron from the chloroplast rRNA large subunit of Chlamydomonas reinhardtii (Cr.LSU) undergoes autocatalytic splicing in vitro. Cr.LSU displays a range of reactions typical of other group I introns. Under optimal conditions, the 5' cleavage step proceeds rapidly, but the exon-ligation step is relatively slow, and no pH dependent hydrolysis of the 3' splice site occurs. A requirement for high temperature and high [Mg2+] suggests involvement of additional splicing factors in vivo. The positions of three cyclization sites of the free intron have been mapped; two of these sites represent reactions analogous to 5'-splice site cleavage, whereas the third is an example of G-exchange. Cr.LSU contains an open reading frame (ORF) potentially encoding an 163 amino acid polypeptide. ORF function has been investigated by using chloroplast gene replacement via particle bombardment. We have shown that the ORF can be deleted from Cr.LSU without affecting splicing in vivo and it thus does not encode an essential splicing factor.  相似文献   

8.
Group I introns are pre-mRNA introns that do not require the spliceosome for their removal. Instead, they fold into complex three-dimensional structures and catalyze two transesterification reactions, thereby excising themselves and joining the flanking exons. These catalytic RNAs (ribozymes) have been modified previously to work in trans, whereby the ribozymes can recognize a splice site on a substrate RNA and replace the 5′- or 3′-portion of the substrate. Here we describe a new variant of the group I intron ribozyme from Tetrahymena that recognizes two splice sites on a substrate RNA, removes the intron sequences between the splice sites, and joins the flanking exons, analogous to the action of the spliceosome. This ‘group I spliceozyme’ functions in vitro and in vivo, and it is able to mediate a growth phenotype in E. coli cells. The intron sequences of the target pre-mRNAs are constrained near the splice sites but can carry a wide range of sequences in their interior. Because the splice site recognition sequences can be adjusted to different splice sites, the spliceozyme may have the potential for wide applications as tool in research and therapy.  相似文献   

9.
10.
11.
Circularly permuted group I intron precursor RNAs, containing end-to-end fused exons which interrupt half-intron sequences, were generated and tested for self-splicing activity. An autocatalytic RNA can form when the primary order of essential intron sequence elements, splice sites, and exons are permuted in this manner. Covalent attachment of guanosine to the 5' half-intron product, and accurate exon ligation indicated that the mechanism and specificity of splicing were not altered. However, because the exons were fused and the order of the splice sites reversed, splicing released the fused-exon as a circle. With this arrangement of splice sites, circular exon production was a prediction of the group I splicing mechanism. Circular RNAs have properties that would make them attractive for certain studies of RNA structure and function. Reversal of splice site sequences in a context that allows splicing, such as those generated by circularly permuted group I introns, could be used to generate short defined sequences of circular RNA in vitro and perhaps in vivo.  相似文献   

12.
13.
14.
15.
Gene expression in eukaryotes is enhanced by the presence of introns in a process known as intron-mediated enhancement (IME), but its mechanism remains unclear. In Saccharomyces cerevisiae, sequences at the 5′-splice sites (SS) and branch point sites (BPS) are highly conserved compared with other higher eukaryotes. Here, the minimum intron sequence essential for IME was investigated using various short introns and a yeast codon-optimized luciferase gene as an IME model. Mutations at the 5′-SS conserved sequence and branch point in the QCR10 intron caused splicing deficiency with either a complete loss or a marked decrease in IME. By contrast, however, the 3′-AG to tG mutant was spliced and retained IME function. Moreover, heterologous introns, which did not show IME in S. cerevisiae, gained splicing competency and IME ability by substitutions to the S. cerevisiae-type 5′-SS and BPS sequences. Intriguingly, several deletion mutants between the 5′-SS and BPS in introns exhibited high levels of IME despite a loss in splicing competency. In most cases, further deletions or substitutions did not recover splicing competency and were found to decrease IME. However, a 16-nt variant consisting of the conserved 5′-SS and BPS sequences and 3′-CAG showed an IME level comparable with that of the wild-type intron. These results indicate that IME can be independent of splicing in S. cerevisiae while intron sequences at the 5′-SS and BPS play an essential role in IME.  相似文献   

16.
17.
18.
19.
The KIT gene has been shown to have multiple functions in hematopoiesis, melanogenesis, and gametogenesis. In addition, mutations of this gene cause pigmentation disorders in humans and mice and are responsible for coat color differences in pigs. While characterizing polymorphisms in the porcine KIT gene, we detected alternative splicing (AS) of the NAGNAG splice acceptor site at the boundary of intron 4 and exon 5. This AS event generated the E and I isoforms, characterized by insertion or deletion, respectively, of CAG at the borders of coding sequence. AS patterns measured in tissue samples from two randomly selected animals did not identified any tissue-specific outcomes. Analysis of AS patterns using three breeds demonstrated that Landrace and Large White pigs expressed both the E and I isoforms. In contrast, a subset of specimens from Korean Native Pigs (KNP) yielded a single I isoform. Alignment of the sequence from several species revealed that the region between the branch point sequence (BPS) and 3′ acceptor site is conserved. However, it is appeared that the selection of either the proximal or distal splice site varied between species. To test the breed specificity the NAGNAG splice acceptor site, we constructed two lineages of minigenes from KNP and Landrace pigs harboring breed-specific mutations. The minigene splicing assay demonstrated that both types of minigenes expressed both the E and I isoforms in two host cell lines, and no differences were detected in the AS pattern between the two breeds. We conclude that the AS at the NAGNAG splice acceptor site on intron 4/exon 5 in the porcine KIT gene is the result of noise selection at the splice site by the splicing machinery. Therefore, this AS event in the porcine KIT gene is unlikely to have any relationship with the coat color variations of Landrace and KNP breeds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号