首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of photorespiration in the foliar assimilation of nitrate (NO3) and carbon dioxide (CO2) was investigated by measuring net CO2 assimilation, net oxygen (O2) evolution, and chlorophyll fluorescence in tomato leaves (Lycopersicon esculentum). The plants were grown under ambient CO2 with ammonium nitrate (NH4NO3) as the nitrogen source, and then exposed to a CO2 concentration of either 360 or 700 µmol mol?1, an O2 concentration of 21 or 2%, and either NO3 or NH4+ as the sole nitrogen source. The elevated CO2 concentration stimulated net CO2 assimilation under 21% O2 for both nitrogen treatments, but not under 2% O2. Under ambient CO2 and O2 conditions (i.e. 360 µmol mol?1 CO2, 21% O2), plants that received NO3 had 11–13% higher rates of net O2 evolution and electron transport rate (estimated from chlorophyll fluorescence) than plants that received NH4+. Differences in net O2 evolution and electron transport rate due to the nitrogen source were not observed at the elevated CO2 concentration for the 21% O2 treatment or at either CO2 level for the 2% O2 treatment. The assimilatory quotient (AQ) from gas exchange, the ratio of net CO2 assimilation to net O2 evolution, indicated more NO3 assimilation under ambient CO2 and O2 conditions than under the other treatments. When the AQ was derived from gross O2 evolution rates estimated from chlorophyll fluorescence, no differences could be detected between the nitrogen treatments. The results suggest that short‐term exposure to elevated atmospheric CO2 decreases NO3 assimilation in tomato, and that photorespiration may help to support NO3 assimilation.  相似文献   

2.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

3.
Two clones of 5-year-old Norway spruce [Picea abies (L.) Karst.] were exposed to two atmospheric concentrations of CO2 (350 and 750 μmol mol?1) and O3 (20 and 75nmolmol?1) in a phytotron at the GSF-Forschung-szentrum (Munich) over the course of a single season (April to October). The phytotron was programmed to recreate an artificial climate similar to that at a high elevation site in the Inner Bavarian Forest, and trees were grown in large containers of forest soil fertilized to achieve contrasting levels of potassium nutrition, designated well-fertilized or K-deficient. Measurements of the rate of net CO2 assimilation were made on individual needle year age classes over the course of the season, chlorophyll fluorescence kinetics were recorded after approximately 23 weeks, and seasonal changes in non-structural carbohydrate composition of the current year's foliage were monitored. Ozone was found to have contrasting effects on the rate of net CO2 assimilation in different needle age classes. After c. 5 months of fumigation, elevated O3 increased (by 33%) the rate of photosynthesis in the current year's needles. However, O3 depressed (by 30%) the photo-synthetic rate of the previous year's needles throughout the period of exposure. Chlorophyll fluorescence measurements indicated that changes in photosystem II electron transport played no significant role in the effects of O3 on photosynthesis. The reasons for the contrasting effects of O3 on needles of different ages are discussed in the light of other recent findings. Although O3 enhanced the rate at which CO2 was fixed in the current year's foliage, this was not reflected in increases in the non-structural carbohydrate content of the needles. The transfer of ambient CO2-grown trees to a CO2-enriched atmosphere resulted in marked stimulation in the photosynthetic rate of current and previous year's foliage. However, following expansion of the current year's growth, the photosynthetic rate of the previous year's foliage declined. The extent of photosynthetic adjustment in response to prolonged exposure to elevated CO2 depended upon the clone, providing evidence of intraspecific variation in the long-term response of photosynthesis to elevated CO2. The increase in photosynthesis induced by CO2 enrichment was associated with increased foliar concentrations of glucose, fructose and starch (but no change in sucrose) in the new growth. CO2 enrichment significantly enhanced the photosynthetic rate of K-deficient needles, but there was a strong CO2soil interaction in the current year's needles, indicating that the long-term response of trees to a high CO2 environment may depend on soil fertility. Although the rate of photosynthesis and non-structural carbohydrate content of the new needles were increased in O3-treated plants grown at higher levels of CO2, there was no evidence that elevated CO2 provided additional protection against O3 damage. Simultaneous exposure to elevated O3 modified the effects of elevated CO2 on needle photosynthesis and non-structural carbohydrate content, emphasizing the need to take into account not only soil nutrient status but also the impact of concurrent increases in photochemical oxidant pollution in any serious consideration of the effects of climate change on plant production.  相似文献   

4.
Potato plants (Solanum tuberosum L. cv. Bintje) were grown to maturity in open-top chambers under three carbon dioxide (CO2; ambient and 24 h d−1 seasonal mean concentrations of 550 and 680 μmol mol−1) and two ozone levels (O3; ambient and an 8 h d−1 seasonal mean of 50 nmol mol−1). Chlorophyll content, photosynthetic characteristics, and stomatal responses were determined to test the hypothesis that elevated atmospheric CO2 may alleviate the damaging influence of O3 by reducing uptake by the leaves. Elevated O3 had no detectable effect on photosynthetic characteristics, leaf conductance, or chlorophyll content, but did reduce SPAD values for leaf 15, the youngest leaf examined. Elevated CO2 also reduced SPAD values for leaf 15, but not for older leaves; destructive analysis confirmed that chlorophyll content was decreased. Leaf conductance was generally reduced by elevated CO2, and declined with time in the youngest leaves examined, as did assimilation rate (A). A generally increased under elevated CO2, particularly in the older leaves during the latter stages of the season, thereby increasing instantaneous transpiration efficiency. Exposure to elevated CO2 and/or O3 had no detectable effect on dark-adapted fluorescence, although the values decreased with time. Analysis of the relationships between assimilation rate and intercellular CO2 concentration and photosynthetically active photon flux density showed there was initially little treatment effect on CO2-saturated assimilation rates for leaf 15. However, the values for plants grown under 550 μmol mol−1 CO2 were subsequently greater than in the ambient and 680 μmol mol−1 treatments, although the beneficial influence of the former treatment declined sharply towards the end of the season. Light-saturated assimilation was consistently greater under elevated CO2, but decreased with time in all treatments. The values decreased sharply when leaves grown under elevated CO2 were measured under ambient CO2, but increased when leaves grown under ambient CO2 were examined under elevated CO2. The results obtained indicate that, although elevated CO2 initially increased assimilation and growth, these beneficial effects were not necessarily sustained to maturity as a result of photosynthetic acclimation and the induction of earlier senescence.  相似文献   

5.
Naturally grown trees of Mediterranean evergreen oak (Quercus ilex L.), representing the climax species of the region, were enclosed in six large open-top chambers and exposed to ambient and elevated CO2 concentrations during a 3 year period. Maximum daily net photosynthetic rates measured at the two different CO2 concentrations were from 30 to 100% higher in elevated than in ambient [CO2] throughout the experimental period. The increase in maximum daily photosynthesis was also accompanied by a 93% rise in the apparent quantum yield of CO2 assimilation, measured during periods of optimum soil moisture conditions. Hence, no clear evidence of down-regulation of net photosynthetic activity was found. Interactions between atmospheric CO2 concentration and plant water stress were studied by following the natural evolution of drought in different seasons and years. At each level of water stress, the maximum rate of carbon assimilation was higher in elevated than in ambient [CO2] by up to 100%. Analysis of in vivo chlorophyll fluorescence parameters in normal (21%) and low (2%) oxygen concentrations provided useful insights into the functioning and stability of the photosynthetic processes. The photochemical efficiency of PSII (Fv/Fm) progressively decreased as drought conditions became more evident; this trend was accentuated under elevated [CO2]. Thermal de-excitation processes were possibly more significant under elevated than under ambient [CO2], in a combination of environmental stresses. This research suggests two possible conclusions: (i) a ‘positive’ interaction between elevated [CO2] and carbon metabolism can be obtained through relief of water stress limitation in the summer months, and (ii) elevated [CO2], under drought conditions, may also enhance the significance of slow-relaxing quenching.  相似文献   

6.
Kellomäki  Seppo  Wang  Kai-Yun 《Plant Ecology》1998,136(2):229-248
Starting in early spring of 1994, naturally regenerated, 30-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers and exposed in situ to doubled ambient O3,doubled ambient CO2 and a combination of O3 and CO2 from 15 April to 15 September. To investigate daily and seasonal responses of CO2 exchange to elevated O3 and CO2, the CO2 exchange of shoots was measured continuously by an automatic system for measuring gas exchange during the course of one year (from 1 Januray to 31 December 1996). A process-based model of shoot photosynthesis was constructed to quantify modifications in the intrinsic capacity of photosynthesis and stomatal conductance by simulating the daily CO2 exchange data from the field. Results showed that on most days of the year the model simulated well the daily course of shoot photosynthesis. Elevated O3 significantly decreased photosynthetic capacity and stomatal conductance during the whole photosynthetic period. Elevated O3 also led to a delay in onset of photosynthetic recovery in early spring and an increase in the sensitivity of photosynthesis to environmental stress conditions. The combination of elevated O3 and CO2 had an effect on photosynthesis and stomatal conductance similar to that of elevated O3 alone, but significantly reduced the O3-induced depression of photosynthesis. Elevated CO2 significantly increased the photosynthetic capacity of Scots pine during the main growing season but slightly decreased it in early spring and late autumn. The model calculation showed that, compared to the control treatment, elevated O3 alone and the combination of elevated O3 and CO2 decreased the annual total of net photosynthesis per unit leaf area by 55% and 38%, respectively. Elevated CO2 increased the annual total of net photosynthesis by 13%.  相似文献   

7.
The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well‐watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non‐stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species‐specific and dependent on the type of competition. Thus, the response to elevated CO2 in well‐watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species‐level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions.  相似文献   

8.
Summary Routine field determination of the parameters characterizing the activity of the photosynthetic apparatus is often difficult when attached branches of tall trees have to be used for gas exchange measurement. If severed twigs could be used, determining these parameters would be greatly facilitated. Because stomatal conductance changes when twigs or leaves are detached, CO2 assimilation is usually altered. Thus, measurements made at ambient CO2 concentration fail to accurately assess the activity of the photosynthetic apparatus because photosynthetic rates greatly depend on the supply of carbon dioxide. However, when photosynthetic carboxylation reactions are saturated by increased CO2 partial pressure in the mesophyll, CO2 assimilation rates no longer depend on instantaneous stomatal conductance, as shown by gas exchange measurements of spruce (Picea abies) twigs prior to and following detachment. Because net photosynthesis following detachment at saturating CO2 remains constant for a minimum of 15 min, photosynthetic measurements of severed twigs may be reliable. This length of time is sufficient for detaching and recutting the twig, assembling a portable minicuvette system, re-establishing steady-state conditions with the gas analyser system, and reading the data over a reasonable period of time. The method described measures the maximal photosynthetic CO2 assimilation of spruce needles of a single age-class from detached spruce twigs under the following conditions: saturating light, saturating external CO2-partial pressure, standardized temperature and air humidity in the field. The method is applicable as a routine procedure to characterize the status of the photosynthetic apparatus of spruce trees that may be damaged in the process of forest decline.  相似文献   

9.
Saplings of Fagus sylvatica and Picea abies were grown in mono‐ and mixed cultures in a 2‐year phytotron study under all four combinations of ambient and elevated ozone (O3) and carbon dioxide (CO2) concentrations. The hypotheses tested were (1) that the competitiveness of beech rather than spruce is negatively affected by the exposure to enhanced O3 concentrations, (2) spruce benefits from the increase of resource availability (elevated CO2) in the mixed culture and (3) that the responsiveness of plants to CO2 and O3 depends on the type of competition (i.e. intra vs. interspecific). Beech displayed a competitive disadvantage when growing in mixture with spruce: after two growing seasons under interspecific competition, beech showed significant reductions in leaf gas exchange, biomass development and crown volume as compared with beech plants growing in monoculture. In competition with spruce, beech appeared to be nitrogen (N)‐limited, whereas spruce tended to benefit in terms of its plant N status. The responsiveness of the juvenile trees to the atmospheric treatments differed between species and was dominated by the type of competition: spruce growth benefited from elevated CO2 concentrations, while beech growth suffered from the enhanced O3 regime. In general, interspecific competition enhanced these atmospheric treatment effects, supporting our hypotheses. Significant differences in root : shoot biomass ratio between the type of competition under both elevated O3 and CO2 were not caused by readjustments of biomass partitioning, but were dependent on tree size. Our study stresses that competition is an important factor driving plant development, and suggests that the knowledge about responses of plants to elevated CO2 and/or O3, acquired from plants growing in monoculture, may not be transferred to plants grown under interspecific competition as typically found in the field.  相似文献   

10.
Measurements of net fluxes of CO2 and O2 from leaves and chlorophyll a fluorescence were used to determine the role of mitochondrial respiration during nitrate (NO3) assimilation in both a C3 (wheat) and a C4 (maize) plant. Changes in the assimilatory quotient (net CO2 consumed over net O2 evolved) when the nitrogen source was shifted from NO3 to NH4+AQ) provided a measure of shoot NO3 assimilation. According to this measure, elevated CO2 inhibited NO3 assimilation in wheat but not maize. Net O2 exchange under ambient CO2 concentrations increased in wheat plants receiving NO3 instead of NH4+, but gross O2 evolution from the photosynthetic apparatus (JO2) was insensitive to nitrogen source. Therefore, O2 consumption within wheat photosynthetic tissue (ΔΟ2), the difference between JO2 and net O2 exchange, decreased during NO3 assimilation. In maize, NO3 assimilation was insensitive to changes in intercellular CO2 concentration (Ci); nonetheless, ΔΟ2 at low Ci values was significantly higher in NO3‐fed than in NH4+‐fed plants. Changes in O2 consumption during NO3 assimilation may involve one or more of the following processes: (a) Mehler ascorbate peroxidase (MAP) reactions; (b) photorespiration; or (c) mitochondrial respiration. The data presented here indicates that in wheat, the last process, mitochondrial respiration, is decreased during NO3 assimilation. In maize, NO3 assimilation appears to stimulate mitochondrial respiration when photosynthetic rates are limiting.  相似文献   

11.
Elevated levels of both ozone and UV-B radiation are typical for high-altitude sites. Few studies have investigated their possible interaction on plants. This study reports interactive effects of O3 and UV-B radiation in four-year-old Norway spruce and Scots pine trees. The trees were cultivated in controlled environmental facilities under simulated climatic conditions recorded on Mt Wank, an Alpine mountain in Bavaria, and were exposed for one growing season to simulated ambient or twice-ambient ozone regimes at either near ambient or near zero UV-B radiation levels. Chlorotic mottling and yellowing of current year needles became obvious under twice-ambient O3 in both species at the onset of a high ozone episode in July. Development of chlorotic mottling in relation to accumulated ozone concentrations over a threshold of 40 nL L–1 was more pronounced with near zero rather than ambient UV-B radiation levels. In Norway spruce, photosynthetic parameters at ambient CO2 concentration, measured at the end of the experiment, were reduced in trees cultivated under twice-ambient O3, irrespective of the UV-B treatment. Effects on photosynthetic capacity and carboxylation efficiency were restricted to trees exposed to near zero levels of UV-B radiation, and twice-ambient O3. The data indicate that UV-B radiation, applied together with O3, ameliorates the detrimental effects of O3. The data also demonstrate that foliar symptoms develop more rapidly in Scots pine than in Norway spruce at higher accumulated ozone concentrations. Symbols and abbreviations: LSD, least significant difference; PAS300, UV-B irradiance weighted according to the plant action spectrum of Green et al. (1974) normalized at 300 (nm); AOT40, (AOT = accumulated over threshold) reflects the sum of hourly ozone concentrations above 40 nL L–1 during daylight hours (> 50 Wm–2) ( Kärenlampi & Skärby 1996 ); A350, net photosynthesis at ambient CO2; G350, stomatal conductance for water vapour at ambient CO2; A2500, net photosynthesis at saturating CO2 (maximal potential photosynthetic activity); CE, carboxylation efficiency; ROS, reactive oxygen species; RuBP, ribulose 1,5-bisphosphate; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; GLM, general linear model.  相似文献   

12.
Forest trees are major components of the terrestrial biome and their response to rising atmospheric CO2 plays a prominent role in the global carbon cycle. In this study, loblolly pine seedlings were planted in the field in recently disturbed soil of high fertility, and CO2 partial pressures were maintained at ambient CO2 (Amb) and elevated CO2 (Amb + 30 Pa) for 4 years. The objective of the study was to measure seasonal and long-term responses in growth and photosynthesis of loblolly pine exposed to elevated CO2 under ambient field conditions of precipitation, light, temperature and nutrient availability. Loblolly pine trees grown in elevated CO2 produced 90% more biomass after four growing seasons than did trees grown in ambient CO2. This large increase in final biomass was primarily due to a 217% increase in leaf area in the first growing season which resulted in much higher relative growth rates for trees grown in elevated CO2. Although there was not a sustained effect of elevated CO2 on relative growth rate after the first growing season, absolute production of biomass continued to increase each year in trees grown in elevated CO2 as a consequence of the compound interest effect of increased leaf area on the production of more new leaf area and more biomass. Allometric analyses of biomass allocation patterns demonstrated size-dependent shifts in allocation, but no direct effects of elevated CO2 on partitioning of biomass. Leaf photosynthetic rates were always higher in trees grown in elevated CO2, but these differences were greater in the summer (60–130% increase) than in the winter (14–44% increase), reflecting strong seasonal effects of temperature on photosynthesis. Our results suggest that seasonal variation in the relative photosynthetic response to elevated CO2 will occur in natural ecosystems, but total non-structural carbohydrate (TNC) levels in leaves indicate that this variation may not always be related to sink activity. Despite indications of canopy-level adjustments in carbon assimilation, enhanced levels of leaf photosynthesis coupled with increased total leaf area indicate that net carbon assimilation for the whole tree was greater for trees grown under elevated CO2 compared with ambient CO2. If the large growth enhancement observed in loblolly pine were maintained after canopy closure, then these trees could be a large sink for fossil carbon emitted to the atmosphere and produce a negative feedback on atmospheric CO2.  相似文献   

13.
Four-year-old saplings of Scots pine (Pinus sylvestris) (L.) were exposed for 11 weeks in controlled-environment chambers to charcoad-filtered air, or to charcoal-filtered air supplemented with NH3 (40 g m–3), O3 (110 g m–3 during day/ 40 g m–3 during night) or NH3+O3. All treatments were carried out at ambient (259 L L–1) and at elevated CO2 concentration (700 L L–1). Total tree biomass, mycorrhizal infection, net CO2 assimilation (Pn), stomatal conductance (gs), transpiration of the shoots and NH3 metabolization of the needles were measured. In ambient CO2 (1) gaseous NH3 decreased mycorrhizal infection, without significantly affecting tree biomass or N concentration and it enhanced the activity of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in one-year-old needles; (2) ozone decreased mycorrhizal infection and the acitivity of GS in the needles, while it increased the activity og GDH; (3) exposure to NH3+O3 lessened the effects of single exposures to NH3 and O3 on reduction of mycorrhizal infection and on increase in GDH activity. Similar lessing effects on mycorrhizal infection as observed in trees exposed to NH3+O3 at ambient CO2, were measured in trees exposed to NH3+O3 at elevated CO2. Exposure to elevated CO2 without pollutants did not significantly affect any of the parameters studied, except for a decrease in the concentration of soluble proteins in the needles. Elevated CO2 _NH3 strongly decreased root branching and mycorrhizal infection and temporarily stimulated Pn and gs. The exposure to elevated CO2+NH3+O3 also transiently stimulated Pn. The possible mechanisms underlying and integrating these effects are discussed. Elevated CO2 clearly did not alleviate the negative effects of NH3 and O3 mycoorhiral infection. The significant reduction of mycorrhizal infection after exposure to NH3 or O3, observed before significant changes in gas exchange or growth occurred, suggest the use of mycorrhizal infection as an early indicator for NH3 and O3 induced stress.Abbreviations DW dry weight - FA filtered air - FAa filtered air at ambient CO2 - FAe filtered air at elevated CO2 - FW fresh weight - GDH glutamate dehydrogenase - GS glutamine synthetase - gs stomatal conductance - Pn net CO2 assimilation - RWR root weight ratio - SRL specific root length  相似文献   

14.
Winter wheat (Triticum aestivum L., cv. Mercia) was grown at two different atmospheric CO2 concentrations (350 and 700 μmol mol−1), two temperatures [ambient temperature (i.e. tracking the open air) and ambient +4°C] and two rates of nitrogen supply (equivalent to 489 kg ha−1 and 87 kg ha−1). Leaves grown at 700 μmol mol−1 CO2 had slightly greater photosynthetic capacity (10% mean increase over the experiment) than those grown at ambient CO2 concentration, but there were no differences in carboxylation efficiency or apparent quantum yield. The amounts of chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area did not change with long-term exposure to elevated CO2 concentration. Thus winter wheat, grown under simulated field conditions, for which total biomass was large compared to normal field production, did not experience loss of components of the photosynthetic system or loss of photosynthetic competence with elevated CO2 concentration. However, nitrogen supply and temperature had large effects on photosynthetic characteristics but did not interact with elevated CO2 concentration. Nitrogen deficiency resulted in decreases in the contents of protein, including Rubisco, and chlorophyll, and decreased photosynthetic capacity and carboxylation efficiency. An increase in temperature also reduced these components and shortened the effective life of the leaves, reducing the duration of high photosynthetic capacity.  相似文献   

15.
The future environment will exhibit increases in soil salt concentrations and atmospheric CO2. In general, plant growth is inhibited by salt stress and stimulated by elevated CO2. This study investigated whether elevated CO2 could improve plant growth under salt stress and the mechanisms involved. We measured functional and morphological components of growth in barley (cv. Iranis) subjected to 0, 80, 160, or 240 mM NaCl and grown at either 350 (ambient) or 700 (elevated) μmol mol?1 CO2. Under nonsaline conditions, elevated CO2 stimulated growth by increasing the relative growth rate (RGR). Maximum CO2 stimulation was observed within the first 10 days of development, before the start of the salt treatment. Afterwards, salt stress caused reductions in biomass production and RGR by decreasing the photosynthetic rate and increasing the respiration rate; this resulted in a reduced net assimilation rate (functional component). In addition, salt stress caused nutritional imbalances, which reduced the leaf expansion capacity, and changed the root-to-shoot ratio. This resulted in reductions in the specific leaf area and leaf weight ratio (morphological components). However, the functional component became more relevant with increasing salt stress. Under elevated CO2 conditions, salt stress inhibited growth less than that observed at ambient CO2. This occurred because (1) more dry biomass was synthesized for a given leaf area due to higher photosynthetic rates, and (2) greater leaf area and root biomass were maintained for photosynthesis and water and mineral uptake, respectively.  相似文献   

16.
Urban  O.  Marek  M.V. 《Photosynthetica》2000,36(4):533-545
Twelve-year-old Norway spruce (Picea abies [L.] Karst.) trees were exposed to ambient (AC) or elevated (EC) [ambient + 350 µmol(CO2) mol-1] CO2 concentrations in open-top-chamber (OTC) experiment under the field conditions of a mountain stand. Short-term (4 weeks, beginning of the vegetation season) and long-term (4 growing seasons, end of the vegetation season) effects of this treatment on biochemical parameters of CO2 assimilation were evaluated. A combination of gas exchange, fluorescence of chlorophyll a, and application of a mathematical model of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity was used. The analysis showed that the depression of photosynthetic activity by long-term impact of elevated CO2 was mainly caused by decreased RuBPCO carboxylation rate. The electron transport rate as well as the rate of ribulose-1,5-bisphosphate (RuBP) formation were also modified. These modifications to photosynthetic assimilation depended on time during the growing season. Changes in the spring were caused mainly by local deficiency of nitrogen in the assimilating tissue. However, the strong depression of assimilation observed in the autumn months was the result of insufficient carbon sink capacity.  相似文献   

17.
Seedlings of Schima superba were exposed to both ambient (375 ppm) and 720 ppm levels of CO2 in combination with two incubation temperatures (25/20, 30/25°C, day/night) for a six-month period. Net height growth of seedlings was enhanced in the early period of exposure to high levels of CO2. However, when seedlings were exposed for a longer period of time to this high concentration, net height growth was inhibited. Decreased photosynthetic rate with elevated CO2 was observed when measured in the ambient CO2 over a long-term exposure of 6 months. In contrast, a significant increase in photosynthesis was noted for seedlings exposed to higher incubation temperature in either ambient or 720 ppm CO2 concentrations. The response of CO2 assimilation to internal Ci was indicated by the lower sensitivity in seedlings grown in elevated CO2 concentration. Though this response could also be found in a higher sensitivity in seedlings grown at higher temperature, the seedlings grown in normal conditions (ambient CO2 and temperature) were still more sensitive to CO2 assimilation response to internal Ci. This experiment suggests that: (1) exposure of seedlings to higher CO2 levels for longer periods may lead to a decrease in seedling height growth and photosynthetic rate, as well as decreasing sensitivity to changing internal CO2 concentrations; (2) the optimum temperature for photosynthesis of seedlings grown in an elevated CO2 concentration was higher than that for seedlings grown in ambient concentration.  相似文献   

18.
Twelve-year-old Norway spruce (Picea abies [L.] Karst.) trees were exposed to ambient (AC) or elevated (EC) [ambient + 350 μmol(CO2) mol-1] CO2 concentrations in open-top-chamber (OTC) experiment under the field conditions of a mountain stand. Short-term (4 weeks, beginning of the vegetation season) and long-term (4 growing seasons, end of the vegetation season) effects of this treatment on biochemical parameters of CO2 assimilation were evaluated. A combination of gas exchange, fluorescence of chlorophyll a, and application of a mathematical model of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity was used. The analysis showed that the depression of photosynthetic activity by long-term impact of elevated CO2 was mainly caused by decreased RuBPCO carboxylation rate. The electron transport rate as well as the rate of ribulose-1,5-bisphosphate (RuBP) formation were also modified. These modifications to photosynthetic assimilation depended on time during the growing season. Changes in the spring were caused mainly by local deficiency of nitrogen in the assimilating tissue. However, the strong depression of assimilation observed in the autumn months was the result of insufficient carbon sink capacity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Leymus chinensis is a dominant, rhizomatous perennial C3 species in the grasslands of Songnen Plain of Northern China, and its productivity has decreased year by year. To determine how productivity of this species responds to different precipitation regimes, elevated CO2 and their interaction in future, we measured photosynthetic parameters, along with the accumulation and partitioning of biomass. Plants were subjected to combinations of three precipitation gradients (normal precipitation, versus normal ± 40%) and two CO2 levels (380±20 µmol mol-1,760±20 µmol mol-1) in controlled-environment chambers. The net photosynthetic rate, and above-ground and total biomass increased due to both elevated CO2 and increasing precipitation, but not significantly so when precipitation increased from the normal to high level under CO2 enrichment. Water use efficiency and the ratio of root: total biomass increased significantly when precipitation was low, but decreased when it was high under CO2 enrichment. Moreover, high precipitation at the elevated level of CO2 increased the ratio between stem biomass and total biomass. The effect of elevated CO2 on photosynthesis and biomass accumulation was higher at the low level of precipitation than with normal or high precipitation. The results suggest that at ambient CO2 levels, the net photosynthetic rate and biomass of L. chinensis increase with precipitation, but those measures are not further affected by additional precipitation when CO2 is elevated. Furthermore, CO2 may partly compensate for the negative effect of low precipitation on the growth and development of L. chinensis.  相似文献   

20.
Although climate scenarios have predicted an increase in [CO2] and temperature conditions, to date few experiments have focused on the interaction of [CO2] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO2. The main goal of this study was to analyze the effect of interacting [CO2] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO2] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO2] (400 vs 700 µmol mol?1) and temperature (ambient vs ambient + 4°C) in CO2 gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO2] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO2] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO2] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号