首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new transposable element of tobacco, Slide, was isolated from thetl mutant line, which shows somatic instability, after its transposition into a locus encoding nitrate reductase (NR). The Slide-124 element is 3733 bp long and its coding sequences show similarities with conserved domains of the transposases ofAc, Tam3 andhobo. Excision from the NR locus is detectable in somatic leaf tissues and Slide mobility is triggered by in vitro tissue culture. Slide excision events create footprints similar to those left byAc and Tam3. Tobacco lines derived from thetl mutant line seem characterized by unmethylated copies of a few members of the highly repetitive Slide family. Slide mobility was monitored in transient expression assays. In wild-type tobacco protoplasts, the complete Slide element, as well as a defective copy, is able to excise. The complete Slide element, but not the defective version, is able to excise in protoplasts of the heterologous species lettuce (Lactuca sativa). These results show that Slide carries the functions required for its own mobility, and represents the first autonomousAc-like element characterized inSolanaceae species.  相似文献   

2.
Summary TheAntirrhinum majus Tam3 element was introduced intoArabidopsis thaliana protoplasts and plants in order to assess the influence of anin vitro culture phase such as protoplasts and callus culture on the mobility of this transposable element in this plant species. The constructs used contained theTam3 element inserted in between the CaMV 35S promoter and thegus- orhpt-coding region, allowing a direct selection of excision candidates. From the different approaches used, only a long-term callus culture allowed us to detectTam3 activity. NoTam3 activity could be detected in protoplasts or protoplast-derived microcolonies. Our data are compared with those previously reported forTam3 in tobacco and petunia.  相似文献   

3.
We describe a phenotypic assay designed to detect excision of the maize controlling element Ac from a selectable marker gene, neomycin phosphotransferase II (NPT II). An NPT II gene which expresses kanamycin resistance in tobacco cells, and contains a unique restriction enzyme site in the untranslated leader region, was constructed. Ac, or a defective Ac element (Ac), was inserted into the leader region of this gene. The transposon insertions inactivated the NPT II gene as determined by transient NPT II expression assays. The three plasmids were inserted into the T DNA of Agrobacterium tumefaciens Ti plasmid vectors, and transferred to tobacco protoplasts. The transformed protoplasts were selected with 100 or 200 µg/ml kanamycin. Protoplasts transformed by the NPT II gene interrupted by Ac formed ˜25% as many calli resistant to 100 or 200 µg/ml kanamycin as protoplasts transformed by the uninterrupted NPT II gene. Protoplasts transformed by the NPT II gene interrupted by Ac did not form any calli resistant to 200 µg/ml of kanamycin when transformed under similar conditions. Southern blot hybridization analyses of seven kanamycin-resistant calli or plants obtained after transformation by the NPT II gene interrupted by Ac revealed that in all cases Ac had excised, restoring the structure of the NPT II gene. This assay is therefore useful to monitor the activity of a transposable element such as Ac and to define the regions of this element involved in transposition activity.  相似文献   

4.
We have recently shown that a plasmid-borneDissociation (Ds) element can excise from extrachromosomal plasmid DNA and integrate into a plant genome in the presence of theActivator (Ac) transposase.Ds andAc-carrying plasmids were used to co-transformNicotiana plumbaginifolia protoplasts. Transgenic plants were regenerated and analyzed. Here we describe further characterization of the system and discuss its efficiency in terms of DNA transformation and transposon tagging.  相似文献   

5.
We have investigated the pattern of transposition of an intact, 4.6-kbAc element inArabidopsis thaliana. Because the trans-acting transposition function (transposase) ofAc is not fully penetrant in Arabidopsis, it is not possible to use it as a diagnostic feature to scoreAc genetically, as has been done in maize and tobacco. Instead, the presence or absence of a transposedAc (trAc) was monitored by Southern blots. Germinal transpositions from the marker SPT::Ac were selected using a streptomycin germination assay and scored for the presence of atrAc. Segregation of thetrAc element and the SPT donor locus was scored in the F2 progeny of the germinal revertants, and the recombination fraction between thetrAc element and SPT was estimated by the method of maximum likelihood. We have found that, as in maize and tobacco, receptor sites fortrAcs in Arabidopsis tend to be linked to theAc donor locus.  相似文献   

6.
Summary A protoplast fusion experiment was designed in which the selectable marker, nitrate reductase (NR), also served as a biochemical marker to provide direct evidence for intergeneric specific gene transfer. NR-deficient tobacco (Nicotiana tabacum) mutant Nia30 protoplasts were the recipients for the attempted transfer of the NR structural gene from 50 krad -irradiated barley (Hordeum vulgare L.) protoplasts. Barley protoplasts did not form colonies and Nia30 protoplasts could not grow on nitrate medium; therefore, selection was for correction of NR deficiency allowing tobacco colonies to grow on nitrate medium. Colonies were selected from protoplast fusion treatments at an approximate frequency of 10-5. This frequency was similar to the Nia30 reversion frequency, and thus provided little evidence for transfer of the barley NR gene to tobacco. Plants regenerated from colonies had NR activity and were analyzed by western blotting using barley NR antiserum to determine the characteristics of the NR conferring growth on nitrate. Ten plants exhibited tobacco NR indicating reversion of a Nia30 mutant NR locus. Twelve of 26 regenerated tobacco plants analyzed had NR subunits with the electrophoretic mobility and antigenic properties of barley NR. These included plants regenerated from colonies selected from 1) co-culturing a mixture of Nia30 protoplasts with irradiated barley protoplasts without a fusion treatment, 2) a protoplast fusion treatment of Nia30 and barley protoplasts, and 3) a fusion treatment of Nia30 protoplasts with irradiated barley protoplasts. No barley-like NR was detected in plants regenerated from a colony that grew on nitrate following selfed fusion of Nia30 protoplasts. Because tobacco plants expressing barley-like NR were recovered from mixture controls as well as fusion treatments, explanations for these results other than protoplast fusionmediated gene transfer are discussed.  相似文献   

7.
Summary A chlorophyll-deficient mutant line of tobacco (Nicotiana tabacum), named tl, displays spontaneously on leaves green, white, and twinned green/white somatic variations at high frequencies (10–3 to 10–2). The frequency of cell events leading to the somatic variations has been shown to be closely dependent on the stage of differentiation of cells during plant development. The activity of transposable elements is suspected in the tl genotype, and a study of its mutagenic ability was performed by selecting in vitro new mutant cellular types. The cellular marker chosen was the resistance to toxic doses of valine conferred by a permeation deficiency. A reproducible method allowing efficient selection of valine-resistant mutant clones from haploid tobacco mesophyll protoplast-derived cells was used. In 10 out of 12 experiments, the frequency of spontaneous valine-resistant clones obtained with the wild-type control was null for cell populations tested to the 106. On the other hand, spontaneous valine-resistant clones were repeatedly isolated at variable and sometimes high frequencies (greater than 10–3) from cell populations of the tl type. Valine resistance of plants regenerated from these clones was transmitted to the progeny as a single monogenic mutation. These results indicate an increased mutagenic ability of the tl genotype, as compared to the wild-type line.  相似文献   

8.
Specific binding ofNicotiana nuclear protein(s) to subterminal regions of theAc transposable element was detected using gel mobility shift assays. A sequence motif (GGTAAA) repeated in both terminal regions ofAc, was identified as the protein binding site. Mutation of two nucleotides in this motif was sufficient to abolish binding. Based on a series of competition assays, it is deduced that there is cooperative binding between two repeats, each similar to the GGTAAA motif. The binding protein is probably similar to a previously characterized maize protein which binds to a GGTAAA-containing motif located in the ends ofMutator. Moreover, we show that DNA fromDs1 competes for protein binding toAc termini, and we show, by sequence analysis, that GGTAAA binding sites are present in the terminal region ofTgm1, Tpn1, En/Spm, Tam3 andDs1-like elements. This suggests that the binding protein(s) might be involved in the transposition process.  相似文献   

9.
Tam3 from Antirrhinum majus belongs to the Ac/Ds family of transposable elements. An allele of the DAG locus of Antirrhinum ( dag ::Tam3), which is required for chloroplast development and leaf palisade differentiation, has been generated by Tam3 insertion into the untranslated leader sequence of the gene. This allele gives rise to a cold-sensitive phenotype, where mutant tissue containing wild-type revertant somatic sectors is observed in the leaves of plants grown at 15°C, while leaves of plants grown at 25°C appear near wild-type. The temperature sensitivity of dag ::Tam3 results from expression of the DAG locus responding to the activity of the transposable element, the transposition of which is very sensitive to growing temperature. Genetic suppression of Tam3 transposition, using the STABILISER locus, also results in suppression of the dag mutant phenotype. dag ::Tam3 represents a Tam3-suppressible allele similar to those described for Mu transposons in maize. Suppression of the dag mutant phenotype in response to element inactivation appears to result from use of an alternative promoter at the 3' end of the Tam3 element. The production of suppressible alleles by an Ac-like element is discussed in relation to the mutagenic potential of plant transposons in producing complex genetic diversity.  相似文献   

10.
Eight independently isolated unstable alleles of theOpaque2 (O2) locus were analysed genetically and at the DNA level. The whole series of mutations was isolated from a maize strain carrying a wild-typeO2 allele and the transposable elementActivator (Ac) at thewx-m7 allele. Previous work with another unstable allele of the same series has shown that it was indeed caused by the insertion of anAc element. Unexpectedly, the remaining eight mutations were not caused by the designatedAc element, but by other insertions that are structurally similar or identical to one of two different autonomous transposable elements. Six mutations were caused by the insertion of a transposable element of theEnhancer/Suppressor-Mutator (En/Spm) family. Two mutations were the result of the insertion of a transposable element of theBergamo (Bg) family. Genetic tests carried out with plants carrying the unstable mutations demonstrated that all were caused by the insertion of an autonomous transposable element.  相似文献   

11.
By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after γ-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 by insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 by terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5′ and 3′ ends of dTnp1 together with a perfect palindrome located after the 5′ inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.  相似文献   

12.
A case of somatic instability affecting aleurone colour in a strain of maize from India with flint background was analysed. The somatic instability is localized to theC 1 (Inhibitor) allele ofC locus on the short arm of chromosome 9. Molecular tests indicated thatAc is not present in the Indian stock and the evidence is consistent with the involvement of theEn (Spm) transposable element in the instability. The presence of theEn (Spm)-like element in the stock would suggest that these elements have been present in the maize genome for a long time. A new allele ofshrunken (sh1) gene with a somewhat unorthodox breeding behaviour is also described.  相似文献   

13.
Electrofusion of protoplasts from two complementary nitrate reductase deficient mutants of Nicotiana plumbaginifolia has resulted in somatic hybrid lines. Mesophyll protoplasts isolated from the cofactor mutant CNX 20 and fluorescein diacetate stained protoplasts derived from a cell suspension culture of the NA 36 line, being defective in the apoenzyme, were used in the fusion experiments. In total, 594 lines were recovered which could proliferate on a selective medium with nitrate as the sole nitrogen source. This is including 141 putative hybrid lines which were obtained after transfer of 1048 heterokaryons with a micromanipulator one day after electrofusion. The hybrid character of some of the selected lines was confirmed by nitrate reductase activity measurements. Plants were grown from hybrid calli.Abbreviations NR nitrate reductase - FDA fluorescein diacetate - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP benzylaminopurine - NAA naphthaleneacetic acid - NED N-1-naphtyl-ethylenediamide hydrochloride - PEG polyethylene glycol - AC alternating current - DC direct current  相似文献   

14.
15.
A pilot-scale transposon mutagenesis experiment using a modified autonomous Activator (Ac) element, AcΔNael, was carried out in Arabidopsis thaliana. Four different transformants carrying Ac elements in different and defined genomic locations were used to generate 1000 plants carrying approximately 500 independent germinal transposition events. These plants were then selfed and the 1000 families screened in tissue culture and soil for phenotypic mutants. Fifty different families segregated mutations in their progeny. Preliminary Southern blot analysis of 29 families which segregated mutant progeny, showed that 28 had a transposed Ac. Six of the families were further tested for linkage between the transposed Ac and the mutant phenotype, and instability of the putatively tagged locus. Two of the mutants were shown to be tagged as they were tightly linked to a transposed Ac, and somatic and germinal reversion was associated with loss of Ac. One other mutant locus was shown to be closely linked to a transposed Ac, and therefore was likely to be tagged. The remaining three mutations were not tagged as they were not linked to a transposed Ac. In two of the tagged mutants Ac had transposed to closely linked sites, while in a third mutant the co-segregating Ac had transposed to a site which was not tightly linked to the donor T-DNA. Multiple insertions into the DIF1 locus were found, due to the preferential transposition of Ac to a linked site.  相似文献   

16.
17.
Specific binding ofNicotiana nuclear protein(s) to subterminal regions of theAc transposable element was detected using gel mobility shift assays. A sequence motif (GGTAAA) repeated in both terminal regions ofAc, was identified as the protein binding site. Mutation of two nucleotides in this motif was sufficient to abolish binding. Based on a series of competition assays, it is deduced that there is cooperative binding between two repeats, each similar to the GGTAAA motif. The binding protein is probably similar to a previously characterized maize protein which binds to a GGTAAA-containing motif located in the ends ofMutator. Moreover, we show that DNA fromDs1 competes for protein binding toAc termini, and we show, by sequence analysis, that GGTAAA binding sites are present in the terminal region ofTgm1, Tpn1, En/Spm, Tam3 andDs1-like elements. This suggests that the binding protein(s) might be involved in the transposition process.  相似文献   

18.
Summary We report here on the obtainment of interspecific somatic, asymmetric, and highly asymmetric nuclear hybrids via protoplast fusion. Asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from a nitrate reductase-deficient cofactor mutant of N. plumbaginifolia with irradiated (100 krad) kanamycin resistant leaf protoplasts of a haploid N. tabacum. Selection for nitrate reductase (NR) and/or kanamycin (Km) resistance resulted in the production of three groups of plants (NR+, NR+, KmR, and NR-KmR). Cytological analysis of some hybrid regenerants showed the presence of numerous tobacco chromosomes and chromosome fragments, besides a polyploid N. plumbaginifolia genome (tetra or hexaploid). All the regenerants tested were male sterile but some of them could be backcrossed to the recipient partner. In a second experiment, somatic and highly asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from the universal hybridizer of N. plumbaginifolia with suspension protoplasts of a tumor line of N. tabacum. Selection resulted in two types of colonies: nonregenerating hybrid calli turned out to be true somatic hybrids, while cytological analysis of regenerants obtained on morphogenic calli did not show any presence of donor-specific chromosomes. Forty percent of the hybrid regenerants were completely fertile, while the others could only be backcrossed to the recipient N. plumbaginifolia. Since the gene we selected for is not yet cloned, we were not able to demonstrate the transfer of genetic material at the molecular level. However, since no reversion frequency for the nitrate reductase mutant is known, and due to a detailed cytological knowledge of both fusion partners, we feel confident in speculating that intergenomic recombination between N. plumbaginifolia and N. tabacum has occurred.  相似文献   

19.
Summary The nivea locus of Antirrhinum majus encodes the enzyme chalcone synthase required for the synthesis of red anthocyanin pigment. The stable allele niv-44 contains an insertion in the nivea gene (Tam2) which has all the structural features of a transposable element. We have shown that this insertion can excise from the nivea locus when niv-44 is combined with another allele (niv-99) in a heterozygote. Activation of Tam2 excision is caused by a factor tightly linked to the niv-99 allele and may be due to complementation between Tam2 and a related element, Tam1. Factors which repress the excision of Tam2 and Tam1 are also described. Repression is not inherited in a simple mendelian way. Many stable mutations may be due to the insertion of transposable elements. Our data suggest that their stability may be due to the absence in the genome of activating factors and to the presence of repressors.  相似文献   

20.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号