首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The 18S and 5S ribosomal RNA genes are separated by a 582-nucleotide-long spacer region in the Oenothera mitochondrial genome. The 5S rRNA gene is 7 bp shorter than the maize and 3 bp shorter than the wheat sequences due to a 4 bp deletion in a side arm of the secondary structure model. The 18S rRNA molecule can be folded analogously to the maize and wheat mitochondrial and Escherichia coli models for this rRNA. Most of the sequence variations between the wheat and Oenothera molecules are located in the variable domains identified for the wheat 18S rRNA.The comparison of the 18S rRNA from the mitochondria of Oenothera as a representative of dicotyledonous plants with that of the monocotyledons wheat and maize provides an indication of the rate of diversity in higher plant mitochondrial genes and gives direct evidence for sequence rearrangements within the 18 S rRNA genes.  相似文献   

3.
DNA samples from various higher plants (Phaseolus aureus, Glycine max, Matthiola incana, Brassica pekinensis, Cucumis melo) were centrifuged in actinomycin-caesium chloride gradients and the genes coding for the ribosomal RNAs were detected by hybridisation with tritium labelled 5S and 25S+18S rRNA, respectively. With DNA of low molecular weight (< 5×106 daltons) the 5S and 25S+18S rRNA genes are often fractionated together. A good separation of the genes for 25S+18S rRNA from the 5S rRNA genes occurred only with high molecular weight DNA (> 10×106 daltons) indicating that at least most of the 5S rRNA genes are not linked to, or interspersed with, the genes coding for 25S and 18S rRNA. This result is in agreement with the situation in animal cells and in contrast to that reported for bacteria, lower eukaryotes and chloroplasts.  相似文献   

4.
5.
Eukaryotic 5S rRNA hybridizes specifically with 18S rRNA in vitro to form a stable intermolecular RNA:RNA hybrid. We have used 5S rRNA/18S rRNA fragment hybridization studies coupled with ribonuclease digestion and primer extension/chain termination analysis of 5S rRNA:18S rRNA hybrids to more completely map those mouse 5S rRNA and 18S rRNA sequences responsible for duplex formation. Fragment hybridization analysis has defined a 5'-terminal region of 5S rRNA (nucleotides 6-27) which base-pairs with two independent sequences in 18S rRNA designated Regions 1 (nucleotides 1157-1180) and 2 (nucleotides 1324-1339). Ribonuclease digestion of isolated 5S rRNA:18S rRNA hybrids with both single-strand- and double-strand-specific nucleases supports the involvement of this 5'-terminal 5S rRNA sequence in 18S rRNA hybridization. Primer extension/chain termination analysis of isolated 5S rRNA:18S rRNA hybrids confirms the base-pairing of 5S rRNA to the designated Regions 1 and 2 of 18S rRNA. Using these results, 5S rRNA:18S rRNA intermolecular hybrid structures are proposed. Comparative sequence analysis revealed the conservation of these hybrid structures in higher eukaryotes and the same but smaller core hybrid structures in lower eukaryotes and prokaryotes. This suggests that the 5S rRNA:16S/18S rRNA hybrids have been conserved in evolution for ribosome function.  相似文献   

6.
Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES–rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors.  相似文献   

7.
S Cory  J M Adams 《Cell》1977,11(4):795-805
The organization of the 18S, 28S and 5.8S rRNA genes in the mouse has been elucidated by mapping with restriction endonucleases Eco RI, Hind III and Bam HI. Ribosomal DNA fragments were detected in electrophoretically fractionated digests of total nuclear DNA by in situ hybridization with radioiodinated rRNAs or with complementary RNA synthesized directly on rRNA templates. A map of the rDNA which includes 13 restriction sites was constructed from the sizes of rDNA fragments and their labeling by different probes The map indicates that the rRNA genes lie within remarkably large units of reiterated DNA, at least 44,000 base pairs long. At least two, and possibly four, classes of repeating unit can be distinguished, the heterogeneity probably residing in the very large nontranscribed spacer region. The 5.8S rRNA gene lies in the transcribed region between the 18S and 28S genes.  相似文献   

8.
K D Sarge  E S Maxwell 《FEBS letters》1991,294(3):234-238
We have previously shown that a 5'-terminal region of mouse 5 S rRNA can base-pair in vitro with two distinct regions of 18 S rRNA. Further analysis reveals that these 5 S rRNA-complementary sequences in 18 S rRNA also exhibit complementarity to the Kozak consensus sequence surrounding the mRNA translational start site. To test the possibility that these 2 regions in 18 S rRNA may be involved in mRNA binding and translational initiation, we have tested, using an in vitro translation system, the effects of DNA oligonucleotides complementary to these 18 S rRNA sequences on protein synthesis. Results show that an oligonucleotide complementary to one 18 S rRNA region does inhibit translation at the step of initiation. We propose a Competitive-Displacement Model for the initiation of translation involving the intermolecular base-pairing of 5 S rRNA, 18 S rRNA and mRNA.  相似文献   

9.
Plant mitochondria contain three rRNA genes, rrn26, rrn18 and rrn5, the latter two being co-transcribed. We have recently identified a polynucleotide phosphorylase-like protein (AtmtPNPase) in Arabidopsis mitochondria. Plants downregulated for AtmtPNPase expression (PNP− plants) accumulate 18S rRNA species polyadenylated at internal sites, indicating that AtmtPNPase is involved in 18S rRNA degradation. In addition, AtmtPNPase is required to degrade the leader sequence of 18S rRNA, a maturation by-product excised by an endonucleolytic cut 5′ to the 18S rRNA. PNP− plants also accumulate 18S rRNA precursors correctly processed at their 5′ end but containing the intergenic sequence (ITS) between the 18S and 5S rRNA. Interestingly, these precursors may be polyadenylated. Taken together, these results suggest that AtmtPNPase initiates the degradation of the ITS from 18S precursors following polyadenylation. To test this, we overexpressed in planta a second mitochondrial exoribonuclease, AtmtRNaseII, that degrades efficiently unstructured RNA including poly(A) tails. This resulted also in the detection of 18S rRNA precursors showing that AtmtRNaseII is not able to degrade the ITS but can impede the action of AtmtPNPase in initiating the degradation of the ITS. These results show that AtmtPNPase is essential for several aspects of 18S rRNA metabolism in Arabidopsis mitochondria.  相似文献   

10.
11.
An EMBL4 recombinant phage which encodes one of the full length of the aphid ribosomal DNA has been isolated from the aphid genomic library. Determination of the complete nucleotide sequence of the aphid 18S rRNA gene revealed that it is 2469 bp with a G + C content of 59%. The aphid 18S rRNA gene studied here is the longest and has the highest G + C content among the 18S rRNA genes examined so far. Evidence provided by the S1 nuclease assay suggests that the aphid 18S rRNA gene examined in this study is not a pseudogene containing an insertion sequence. Based on the nucleotide sequence of the 18S rRNA gene, we constructed a presumed secondary-structure model of the aphid 18S rRNA. In the aphid 18S rRNA, the eucaryote-specific E21 and 41 region are supposed to be longer and more complex than the counterparts of other 18S rRNA.  相似文献   

12.
In many species of the protist phylum Apicomplexa, ribosomal RNA (rRNA) gene copies are structurally and functionally heterogeneous, owing to distinct requirements for rRNA-expression patterns at different developmental stages. The genomic mechanisms underlying the maintenance of this system over long-term evolutionary history are unclear. Therefore, the aim of this study was to investigate what processes underlie the long-term evolution of apicomplexan 18S genes in representative species. The results show that these genes evolve according to a birth-and-death model under strong purifying selection, thereby explaining how divergent 18S genes are generated over time while continuing to maintain their ability to produce fully functional rRNAs. In addition, it was found that Cryptosporidium parvum undergoes a rapid form of birth-and-death evolution that may facilitate host-specific adaptation, including that of type I and II strains found in humans. This represents the first case in which an rRNA gene family has been found to evolve under the birth-and-death model.  相似文献   

13.
The majority of constitutive proteins in the bacterial 30S ribosomal subunit have orthologues in Eukarya and Archaea. The eukaryotic counterparts for the remainder (S6, S16, S18 and S20) have not been identified. We assumed that amino acid residues in the ribosomal proteins that contact rRNA are to be constrained in evolution and that the most highly conserved of them are those residues that are involved in forming the secondary protein structure. We aligned the sequences of the bacterial ribosomal proteins from the S20p, S18p and S16p families, which make multiple contacts with rRNA in the Thermus thermophilus 30S ribosomal subunit (in contrast to the S6p family), with the sequences of the unassigned eukaryotic small ribosomal subunit protein families. This made it possible to reveal that the conserved structural motifs of S20p, S18p and S16p that contact rRNA in the bacterial ribosome are present in the ribosomal proteins S25e, S26e and S27Ae, respectively. We suggest that ribosomal protein families S20p, S18p and S16p are homologous to the families S25e, S26e and S27Ae, respectively.  相似文献   

14.
A possibility of involvement of 3'-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3-terminal segment (nucleotides 1777-1811) of 18S rRNA including the last hairpin 45 is accessible for complementary interactions in 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA when added to wheat germ cell-free protein synthesizing system were found to specifically inhibit translation of uncapped reporter mRNA coding for beta-glucuronidase, which bears in the 5'-untranslated region (UTR) a leader sequence of potato virus Y (PVY) genomic RNA possessing fragments complementary to the region 1777-1811. It was shown that a sequence corresponding to nucleotides 291-316 of PVY, which is complementary to a major portion of the 3-terminal 18S rRNA segment 1777-1808, when placed into 5'-UTR, is able to enhance translational efficiency of the reporter mRNAs. The results obtained suggest that complementary interactions between mRNA 5'-UTR and 18S rRNA 3'-terminal segment can take place in the course of cap-independent translation initiation.  相似文献   

15.
Saccharomyces cerevisiae snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) required for the processing of 18S rRNA. Here, we show that the previously characterized human, reptilian, amphibian, and fish U17 snoRNAs represent the vertebrate homologues of yeast snR30. We also demonstrate that U17/snR30 is present in the fission yeast Schizosaccharomyces pombe and the unicellular ciliated protozoan Tetrahymena thermophila. Evolutionary comparison revealed that the 3'-terminal hairpins of U17/snR30 snoRNAs contain two highly conserved sequence motifs, the m1 (AUAUUCCUA) and m2 (AAACCAU) elements. Mutation analysis of yeast snR30 demonstrated that the m1 and m2 elements are essential for early cleavages of the 35S pre-rRNA and, consequently, for the production of mature 18S rRNA. The m1 and m2 motifs occupy the opposite strands of an internal loop structure, and they are located invariantly 7 nucleotides upstream from the ACA box of U17/snR30 snoRNAs. U17/snR30 is the first identified box H/ACA snoRNA that possesses an evolutionarily conserved role in the nucleolytic processing of eukaryotic pre-rRNA.  相似文献   

16.
17.
The 66 kDa protein present in a complex with globin mRNA and 18 S rRNA [(1984) Eur. J. Biochem. 143, 27-33] has been reincorporated into functional eukaryotic initiation factor 3 (eIF-3) under conditions of protein synthesis. Additionally, two-dimensional polyacrylamide gel electrophoresis has been used to demonstrate the identity of the 66 kDa protein with the 66 kDa subunit of eIF-3.  相似文献   

18.
19.
Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA   总被引:21,自引:0,他引:21  
We have examined the effects of assembly of ribosomal proteins S5, S6, S11, S12, S18 and S21 on the reactivities of residues in 16 S rRNA towards chemical probes. The results show that S6, S18 and S11 interact with the 690-720 and 790 loop regions of 16 S rRNA in a highly co-operative manner, that is consistent with the previously defined assembly map relationships among these proteins. The results also indicate that these proteins, one of which (S18) has previously been implicated as a component of the ribosomal P-site, interact with residues near some of the recently defined P-site (class II tRNA protection) nucleotides in 16 S rRNA. In addition, assembly of protein S12 has been found to result in the protection of residues in both the 530 stem/loop and the 900 stem regions; the latter group is closely juxtaposed to a segment of 16 S rRNA recently shown to be protected from chemical probes by streptomycin. Interestingly, both S5 and S12 appear to protect, to differing degrees, a well-defined set of residues in the 900 stem/loop and 5'-terminal regions. These observations are discussed in terms of the effects of S5 and S12 on streptomycin binding, and in terms of the class III tRNA protection found in the 900 stem of 16 S rRNA. Altogether these results show that many of the small subunit proteins, which have previously been shown to be functionally important, appear to be associated with functionally implicated segments of 16 S rRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号