首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two new proteinases secreted byCryphonectria parasitica, namely EapB and EapC, have been purified. The corresponding structural genes were isolated by screening a cosmid library, and sequenced. Comparison of genomic and cDNA sequences revealed that theeapB andeapC genes contain three and two introns, respectively. The products of theeapB andeapC genes as deduced from the nucleotide sequences, are 268 and 269 residues long, respectively. N-terminal amino acid sequencing data indicates that EapC is synthesized as a zymogen, which yields a mature 206-amino acid enzyme after cleavage of the prepro sequence. Similarly, sequence alignment studies suggest that EapB is secreted as a 203-residue form which shares extensive similarities not only with EapC but also with two other acid fungal proteinases. However, they display distinct structural features; for example, no cysteine residue is found in EapC. TheeapC gene was mutated using a two-step gene replacement strategy which allowed the specific introduction of several stop codons at the beginning of theeapC coding sequence in an endothiapepsin-deficient (EapA+)C. parasitica strain. Although the resulting strain did not secrete EapC, it still exhibited residual extracellular proteolytic activity, which could be due to EapB.  相似文献   

2.
3.
Summary The complete nucleotide sequences of therecA genes fromEscherichia coli B/r,Shigella flexneri, Erwinia carotovora andProteus vulgaris were determined. The DNA sequence of the coding region of theE. coli B/r gene contained a single nucleotide change compared with theE. coli K12 gene sequence whereas theS. flexneri gene differed at 7 residues. In both cases, the predicted proteins were identical in primary structure to theE. coli K12 RecA protein. The DNA sequences of the recA genes fromE. carotovora andP. vulgaris were 80% and 74% homologous, respectively, to theE. coli K12 gene. The predicted amino acid sequences of theE. carotovora andP. vulgaris RecA proteins were 91% and 85% identical respectively, to that ofE. coli K12. The RecA proteins from bothP. vulgaris andE. carotovora diverged significantly in sequence in the last 50 residues whereas they showed striking conservation throughout the first 300 amino acids which include an ATP-binding region and a subunit interaction domain. A putative LexA repressor binding site was localized upstream of each of the heterologous genes.  相似文献   

4.
Summary Clones carrying thewhite andtopaz eye color genes have been isolated from genomic DNA libraries of the blowflyLucilia cuprina using cloned DNA from the homologouswhite andscarlet genes. respectively, ofDrosophila melanogaster as probes. On the basis of hybridization studies using adjacent restriction fragments, homologous fragments were found to be colinear between the genes from the two species. The nucleotide sequence of a short region of thewhite gene ofL. cuprina has been determined, and the homology to the corresponding region ofD. melanogaster is 72%; at the derived amino acid level the homology is greater (84%) due to a marked difference in codon usage between the species. A major difference in genome organization between the two species is that whereas the DNA encompassing theD. melanogaster genes is free of repeated sequences. that encompassing theirL. cuprina counterparts contains substantial amounts of repeated sequences. This suggests that the genome ofL. cuprina is organized on the short period interspersion pattern. Repeated sequence DNA elements, which appear generally to be short (less than 1 kb) and which vary in repetitive frequency in the genome from greater than 104 copies to less than 102 copies, are found in at least two different locations in the clones carrying these genes. One type of repeat structure, found by sequencing, consists of tandemly repeating short sequences. Restriction site and restriction fragment length polymorphisms involving both thewhite andtopaz gene regions are found within and between populations ofL. cuprina.  相似文献   

5.
AvaI andBsoBI restriction endonucleases are isoschizomers which recognize the symmetric sequence 5′CYCGRG3′ and cleave between the first C and second Y to generate a four-base 5′ extension. TheAvaI restriction endonuclease gene (avaIR) and methylase gene (avaIM) were cloned intoEscherichia coli by the methylase selection method. TheBsoBI restriction endonuclease gene (bsoBIR) and part of theBsoBI methylase gene (bsoBIM) were cloned by the “endo-blue” method (SOS induction assay), and the remainder ofbsoBIM was cloned by inverse PCR. The nucleotide sequences of the two restriction-modification (RM) systems were determined. Comparisons of the predicted amino acid sequences indicated thatAvaI andBsoBI endonucleases share 55% identity, whereas the two methylases share 41% identity. Although the two systems show similarity in protein sequence, their gene organization differs. TheavaIM gene precedesavaIR in theAvaI RM system, while thebsoBIR gene is located upstream ofbsoBIM in theBsoBI RM system. BothAvaI andBsoBI methylases contain motifs conserved among the N4 cytosine methylases.  相似文献   

6.
7.
Single-read sequence analysis of the termini of eight randomly picked clones ofAshbya gossypii genomic DNA revealed seven sequences with homology toSaccharomyces cerevisiae genes (15% to 69% on the amino acid level). One of these sequences appeared to code for the carboxy-terminus of threonine synthase, the product of theS. cerevisiae THR4 gene (52.4% identity over 82 amino acids). We cloned and sequenced the complete putativeAgTHR4 gene ofA. gossypii. It comprises 512 codons, two less than theS. cerevisiae THR4 gene. Overall identity at the amino acid sequence level is 67.4%. A continuous stretch of 32 amino acids displaying complete identity between these two fungal threonine synthases presumably contains the pyridoxal phosphate attachment site. Disruption of theA. gossypii gene led to threonine auxotrophy, which could be complemented by transformation with replicating plasmids carrying theAgTHR4 gene and variousS. cerevisiae ARS elements. Using these plasmids only very weak complementation of aS. cerevisiae thr4 mutation was observed. Investigation of sequences adjacent to theAgTHR4 gene identified three additional ORFs. Surprisingly, the order and orientation of these four ORFs is conserved inA. gossypii andS. cerevisiae.  相似文献   

8.
Thea mating type locus ofUstilago maydis contains the structural genes for a pheromone-based cell recognition system that governs fusion of haploid cells. The locus exists in two alleles, termeda1 anda2. We have completed the analysis of the nucleotide sequences unique toa1 anda2. Within these dissimilar regions we find two short patches of DNA sequence similarity. Interestingly, one of these segments corresponds to the transcribed region of thea1 pheromone precursor. As a result of multiple nucleotide exchanges this sequence does not code for a functional product. The existence of a second pheromone gene in thea2 allele suggests that the present locus had a multiallelic ancestor. In addition, we describe the presence of two additional genes in thea2 allele. We have investigated the role of these genes during mating and pathogenic development and speculate that they might affect mitochondrial inheritance.  相似文献   

9.
InPseudomonas aeruginosa, the products of thexcp genes are required for the secretion of exoproteins across the outer membrane. Despite structural conservation of the Xcp components, secretion of exoproteins via the Xcp pathway is generally not found in heterologous organisms. To study the specificity of this protein secretion pathway, thexcp genes of another fluorescent pseudomonad, the plant growth-promotingPseudomonas putida strain WCS358, were cloned and characterized. Nucleotide sequence analysis revealed the presence of at least five genes, i.e.,xcpP, Q, R, S, andT, with homology toxcp genes ofP. aeruginosa. Unlike the genetic organization inP. aeruginosa, where thexcp cluster consists of two divergently transcribed operons, thexcp genes inP. putida are all oriented in the same direction, and probably comprise a single operon. Upstream ofxcpP inP. putida, an additional open reading frame, with no homolog inP. aeruginosa, was identified, which possibly encodes a lipoprotein. Mutational inactivation ofxcp genes inP. putida did not affect secretion, indicating that no proteins are secreted via the Xcp system under the growth conditions tested, and that an alternative secretion system is operative. To obtain some insight into the secretory pathway involved, the amino acid sequence of the N-terminus of the major extracellular protein was determined. The protein could be identified as flagellin. Mutations in thexcpQ andR genes ofP. aeruginosa could not be complemented by introduction of the correspondingxcp genes ofP. putida. However, expression of a hybrid XcpR protein, composed of the N-terminal one-third ofP. aeruginosa XcpR and the C-terminal two-thirds ofP. putida XcpR, did restore protein secretion in aP. aeruginosa xcpR mutant.  相似文献   

10.
A 240 bpglnB-like gene fragment was PCR amplified fromPaenibacillus polymyxa G2 using universal degenerate primers. These degenerate primers, based on all knownglnB-like genes including thenrgB ofBacillus subtilis at the time of design, were chosen from highly conserved amino acid sequences. The GlnB-like sequence ofP. polymyxa G2 had relatively high identities (more than 70%) to other bacteria GlnB, e.g.Escherichia coli (78%) andKlebsiella pneuomoniae (79%). However, the identity of theP. polymyxa GlnB-like sequence to a GlnK homologue (NrgB) of B.subtilis was low (46%). This is the first report of the sequence of theglnB-like gene from the genusPaenibacillus. Knowledge of theglnB-like gene sequence ofP. polymyxa will make us study deeply the function ofglnB in the genusPaenibacillus.  相似文献   

11.
12.
13.
Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of themeta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, andmeta-cleavage of protocatechuate. ThepcbC gene responsible for themeta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that ofPseudomonas sp. CBS3, yet only a 50% homology with that ofArthrobacter spp. However, thefcb genes for the hydrolytic dechlorination of 4CBA inPseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBP completely viameta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.  相似文献   

14.
The organization of the phosphate-specific transport (pst) operon inPseudomonas aeruginosa has been determined. The gene order of thepst operon ispstC, pstA, pstB, phoU, and a well-conserved Pho box sequence (16/18 bases identical) exists in the promoter region. The most striking difference from the knownEscherichia coli pst operon is the lack of thepstS gene encoding a periplasmic phosphate (Pi)-binding protein. Even though the threepst genes were absolutely required for Pi-specific transport, expression of thepst operon at high levels did not increase Pi uptake inP. aeruginosa. DNA sequences for thepstB andphoU genes have been determined previously. The newly identifiedpstC andpstA genes encode possible integral membrane proteins of 677 amino acids (M r 73 844) and 513 amino acids (M r 56 394), respectively. The amino acid sequences of PstC and PstA predict that these proteins contain a long hydrophilic domain not seen in theirE. coli counterparts. A chromosomal deletion of the entirepst operon renderedP. aeruginosa unable to repress Pi taxis under conditions of Pi excess. ThephoU andpstB genes are essential for repressing Pi taxis. However, mutants lacking either PstC or PstA alone were able to repress Pi taxis under conditions of Pi excess.  相似文献   

15.
TheKlebsiella pneumoniae genesscrA andscrB are indispensable for sucrose (Scr) utilisation. GenescrA codes for an Enzyme IIScr (IIScr) transport protein of the phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system (PTS), whilescrB encodes a sucrose 6-phosphate specific invertase. A 3.7 kbscrAB DNA fragment has been cloned fromK. pneumoniae and expressed inEscherichia coli. Its nucleotide sequence was determined and the coding regions forscrA (1371 bp) andscrB (1401 bp) were identified by genetic complementation, enzyme activity tests and radiolabelling of the gene products. In addition, the nucleotide sequence of thescrB gene from the conjugative plasmid pUR400 isolated fromSalmonella typhimurium was also determined and errors in the previously published sequence of thescrA gene of pUR400 were corrected. Extensive similarity was found between the sequences of ScrA and other Enzymes II, as well as between the two invertases and other sucrose hydrolysing enzymes. Based on the analysis of seven IIScr proteins, a hypothetical model of the secondary structure of IIScr is proposed.  相似文献   

16.
17.
18.
19.
20.
InSaccharomyces cerevisiae the only known role of theCBP2 gene is the excision of the fifth intron of the mitochondrialcyt b gene (bI5). We have cloned theCBP2 gene fromSaccharomyces douglasii (a close relative ofS. cerevisiae). A comparison of theS. douglasii andS. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that theS. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-typeS. douglasii mitochondrial genome, but not in the presence of an intronlessS. cerevisiae mitochondrial genome. Also theS. douglasii andS. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from theS. douglasii mitochondrial genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号