首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In the accompanying paper we demonstrated that endonuclease III-sensitive sites in theMAT andHML loci ofSaccharomyces cerevisiae are repaired by the Nucleotide Excision Repair (NER) pathway. In the current report we investigated the repair of endonuclease III sites, 6-4 photoproducts and cyclobutane pyrimidine dimers (CPDs) in arad14-2 point mutant and in arad14 deletion mutant. TheRAD14 gene is the yeast homologue of the human gene that complements the defect in cells from xeroderma pigmentosum (XP) patients belonging to complementation group A. In the point mutant we observed normal repair of endonuclease III sites (i.e. as wild type), but no removal of CPDs at theMAT andHML loci. Similar experiments were undertaken using the recently createdrad14 deletion mutant. Here, neither endonuclease III sites nor CPDs were repaired inMAT a orHMR a. Thus the point mutant appears to produce a gene product that permits the repair of endonuclease III sites, but prevents the repair of CPDs. Previously it was found that, in the genome overall, repair of 6-4 photoproducts was less impaired than repair of CPDs in the point mutant. The deletion mutant repairs neither CPDs nor 6-4 photoproducts in the genome overall. This finding is consistent with the RAD14 protein being involved in lesion recognition in yeast. A logical interpretation is that therad14-2 point mutant produces a modified protein that enables the cell to repair endonuclease III sites and 6-4 photoproducts much more efficiently than CPDs. This modified protein may aid studies designed to elucidate the role of the RAD14 protein in lesion recognition.  相似文献   

2.
3.
4.
5.
A group of genetically related ultraviolet (UV)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to UV radiation, their ability to carry out excision repair of pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-UV incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD+ strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14, and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The UV-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to UV radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of UV-irradiated DNA during pyrimidine dimer excision in vivo.  相似文献   

6.
HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.  相似文献   

7.
8.
Excision repair defects of Saccharomyces cerevisiae rad1-1, rad4-4, rad7-1 and rad14 mutants were examined. As previously found, transformation of such cells with UV-irradiated plasmid DNA is poor compared to wild-type yeast. Treatment of UV-irradiated YRp12 plasmid DNA with crude preparations of Micrococcus luteus UV endonuclease before introducing it into rad1-1 cells increased transformation efficiency to wild-type levels. This is consistent with earlier reports of rad1-1 mutants being defective in the incision step of excision repair. However, with purified UV endonuclease little or no rescue occured when the UV-irradiated plasmid was incised before transformation into rad1-1 or rad4-4 cells. Furthermore, the purified UV endonuclease reduced transformation of rad7-1 and rad14 mutants to levels seen in rad1-1 and rad4-4 cells. In contrast such treatment caused only a small decrease in the transforming ability of UV-irradiated DNA in wild-type cells. These results show that yeast can normally process pre-incised, UV-irradiated DNA and that this activity is absent in rad1-1, rad4-4, rad7-1 and rad14 mutants. Thus, in addition to their previously reported roles in incision, the RAD1, 4, 7 and 14 gene products are also required for repair to continue after the incision of DNA lesions.  相似文献   

9.
The RAD1 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of damaged DNA. In this paper, we report our observations on the effect of the RAD1 gene on genetic recombination. Mitotic intrachromosomal and interchromosomal recombination in RAD+, rad1, rad52, and other rad mutant strains was examined. The rad1 deletion mutation and some rad1 point mutations reduced the frequency of intrachromosomal recombination of a his3 duplication, in which one his3 allele is deleted at the 3' end while the other his3 allele is deleted at the 5' end. Mutations in the other excision repair genes, RAD2, RAD3, and RAD4, did not lower recombination frequencies in the his3 duplication. As expected, recombination between the his3 deletion alleles in the duplication was reduced in the rad52 mutant. The frequency of HIS3+ recombinants fell synergistically in the rad1 rad52 double mutant, indicating that the RAD1 and RAD52 genes affect this recombination via different pathways. In contrast to the effect of mutations in the RAD52 gene, mutations in the RAD1 gene did not lower intrachromosomal and interchromosomal recombination between heteroalleles that carry point mutations rather than partial deletions; however, the rad1 delta mutation did lower the frequency of integration of linear plasmids and DNA fragments into homologous genomic sequences. We suggest that RAD1 plays a role in recombination after the formation of the recombinogenic substrate.  相似文献   

10.
11.
12.
Repair of plasmid and genomic DNA in a rad7 delta mutant of yeast.   总被引:3,自引:0,他引:3       下载免费PDF全文
Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined in a yeast plasmid of known chromatin structure and in genomic DNA in a radiation-sensitive deletion mutant of yeast, rad7 delta, and its isogenic wild-type strain. A whole plasmid repair assay revealed that only approximately 50% of the CPDs in plasmid DNA are repaired after 6 h in this mutant, compared with almost 90% repaired in wild-type. Using a site-specific repair assay on 44 individual CPD sites within the plasmid we found that repair in the rad7 delta mutant occurred primarily in the transcribed regions of each strand of the plasmid, however, the rate of repair at nearly all sites measured was less than in the wild-type. There was no apparent correlation between repair rate and nucleosome position. In addition, approximately 55% of the CPDs in genomic DNA of the mutant are repaired during the 6 h period, compared with > 80% in the wild-type.  相似文献   

13.
14.
RAD52 and RAD9 are required for the repair of double-strand breaks (DSBs) induced by physical and chemical DNA-damaging agents in Saccharomyces cerevisiae. Analysis of EcoRI endonuclease expression in vivo revealed that, in contrast to DSBs containing damaged or modified termini, chromosomal DSBs retaining complementary ends could be repaired in rad52 mutants and in G1-phase Rad+ cells. Continuous EcoRI-induced scission of chromosomal DNA blocked the growth of rad52 mutants, with most cells arrested in G2 phase. Surprisingly, rad52 mutants were not more sensitive to EcoRI-induced cell killing than wild-type strains. In contrast, endonuclease expression was lethal in cells deficient in Ku-mediated end joining. Checkpoint-defective rad9 mutants did not arrest cell cycling and lost viability rapidly when EcoRI was expressed. Synthesis of the endonuclease produced extensive breakage of nuclear DNA and stimulated interchromosomal recombination. These results and those of additional experiments indicate that cohesive ended DSBs in chromosomal DNA can be accurately repaired by RAD52-mediated recombination and by recombination-independent complementary end joining in yeast cells.  相似文献   

15.
In Saccharomyces cerevisiae, a large number of genes in the RAD52 epistasis group has been implicated in the repair of chromosomal double-strand breaks and in both mitotic and meiotic homologous recombination. While most of these genes are essential for yeast mating-type (MAT) gene switching, neither RAD50 nor XRS2 is required to complete this specialized mitotic gene conversion process. Using a galactose-inducible HO endonuclease gene to initiate MAT switching, we have examined the effect of null mutations of RAD50 and of XRS2 on intermediate steps of this recombination event. Both rad50 and xrs2 mutants exhibit a marked delay in the completion of switching. Both mutations reduce the extent of 5'-to-3' degradation from the end of the HO-created double-strand break. The steps of initial strand invasion and new DNA synthesis are delayed by approximately 30 min in mutant cells. However, later events are still further delayed, suggesting that XRS2 and RAD50 affect more than one step in the process. In the rad50 xrs2 double mutant, the completion of MAT switching is delayed more than in either single mutant, without reducing the overall efficiency of the process. The XRS2 gene encodes an 854-amino-acid protein with no obvious similarity to the Rad50 protein or to any other protein in the database. Overexpression of RAD50 does not complement the defects in xrs2 or vice versa.  相似文献   

16.
The conditionally-lethal pso4-1 mutant allele of the spliceosomal-associated PRP19 gene allowed us to study this gene’s influence on pre-mRNA processing, DNA repair and sporulation. Phenotypes related to intron-containing genes were correlated to temperature. Splicing reporter systems and RT–PCR showed splicing efficiency in pso4-1 to be inversely correlated to growth temperature. A single amino acid substitution, replacing leucine with serine, was identified within the N-terminal region of the pso4-1 allele and was shown to affect the interacting properties of Pso4-1p. Amongst 24 interacting clones isolated in a two-hybrid screening, seven could be identified as parts of the RAD2, RLF2 and DBR1 genes. RAD2 encodes an endonuclease indispensable for nucleotide excision repair (NER), RLF2 encodes the major subunit of the chromatin assembly factor I, whose deletion results in sensitivity to UVC radiation, while DBR1 encodes the lariat RNA splicing debranching enzyme, which degrades intron lariat structures during splicing. Characterization of mutagen-sensitive phenotypes of rad2Δ, rlf2Δ and pso4-1 single and double mutant strains showed enhanced sensitivity for the rad2Δ pso4-1 and rlf2Δ pso4-1 double mutants, suggesting a functional interference of these proteins in DNA repair processes in Saccharomyces cerevisiae.  相似文献   

17.
DNA damage checkpoints are involved in postreplication repair   总被引:2,自引:0,他引:2  
Barbour L  Ball LG  Zhang K  Xiao W 《Genetics》2006,174(4):1789-1800
Saccharomyces cerevisiae MMS2 encodes a ubiquitin-conjugating enzyme variant, belongs to the error-free branch of the RAD6 postreplication repair (PRR) pathway, and is parallel to the REV3-mediated mutagenesis branch. A mutation in genes of either the MMS2 or the REV3 branch does not result in extreme sensitivity to DNA-damaging agents; however, deletion of both subpathways of PRR results in a synergistic phenotype. Nevertheless, the double mutant is not as sensitive to DNA-damaging agents as a rad6 or rad18 mutant defective in the entire PRR pathway, suggesting the presence of an additional subpathway within PRR. A synthetic lethal screen was employed in the presence of a sublethal dose of a DNA-damaging agent to identify novel genes involved in PRR, which resulted in the isolation of RAD9 as a candidate PRR gene. Epistatic analysis showed that rad9 is synergistic to both mms2 and rev3 with respect to killing by methyl methanesulfonate (MMS), and the triple mutant is nearly as sensitive as the rad18 single mutant. In addition, rad9 rad18 is no more sensitive to MMS than the rad18 single mutant, suggesting that rad9 plays a role within the PRR pathway. Moreover, deletion of RAD9 reduces damage-induced mutagenesis and the mms2 spontaneous and induced mutagenesis is partially dependent on the RAD9 gene. We further demonstrated that the observed synergistic interactions apply to any two members between different branches of PRR and G1/S and G2/M checkpoint genes. These results suggest that a damage checkpoint is essential for tolerance mediated by both the error-free and error-prone branches of PRR.  相似文献   

18.
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error‐free branch of post‐replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication‐associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single‐strand break repair (AtPARP1), as well as microhomology‐mediated double‐strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM‐mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.  相似文献   

19.
TheRAD6 gene is a multifunctional gene required for DNA repair, induced mutagenesis and sporulation. The survival and revertibility of two loci in fourrad6-1 mutant strains of different origin after UV irradiation were followed. As expected, all therad6-1 strains tested were more sensitive to UV radiation in comparison withRAD6 strains. The reversion frequency per survivor intrpl-289 andarg4–17 alleles was significantly higher in all fourrad6-1 mutant strains than in wild-type strains after equal doses of UV radiation. On the basis of genetic analysis we suggest that the phenomenon of increased frequency of induced mutagenesis is caused by a suppressor gene.  相似文献   

20.
Using a yeast shuttle vector system, we have previously reported on the toxicity and mutagenicity of Me-lex, [1-methyl-4-[1-methyl-4-[3-(methoxysulfonyl)propanamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propane, a compound that selectively generates 3-methyladenine (3-MeA). We observed that a mutant strain defective in Mag1, the glycosylase that excises 3-MeA in the initial step of base excision repair (BER) to generate an abasic site, is significantly more sensitive to the toxicity of Me-lex with respect to wild type but shows only a marginal increase in mutagenicity. A strain defective in AP endonuclease activity (Deltaapn1apn2), also required for functional BER, is equally sensitive to the toxicity as the Deltamag1 mutant but showed a significantly higher mutation frequency. In the present work, we have explored the role of nucleotide excision repair (NER) in Me-lex-induced toxicity and mutagenicity since it is known that NER acts on abasic sites in vivo in yeast and in vitro assays. To accomplish this, we have deleted one of the genes essential for NER in yeast, namely, RAD14, both in the context of an otherwise DNA repair-proficient strain (Deltarad14) and in a BER-defective isogenic derivative lacking the MAG1 gene (Deltamag1rad14). Interestingly, no sensitivity to the treatment with Me-lex was conferred by the simple deletion of RAD14. However, a significant enhancement in toxicity and mutagenicity was observed when cells lacked both Rad14 and Mag1. The mutation spectrum induced by Me-lex in the Deltamag1rad14 strain is indistinguishable from that observed in the Deltaapn1/Deltaapn2 or in the Deltamag1 strains. The results indicate that in yeast NER can play a protective role against 3-MeA-mediated toxicity and mutagenicity; however, the role of NER is appreciable only in a BER-defective background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号