首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TheGNOM gene is required for pattern formation along the main body axis of the embryo in the flowering plantArabidopsis thaliana. Mutations in theGNOM gene alter the asymmetric division of the zygote and interfere with the formation of distinct apical-basal regions in the developing embryo. We have isolated theGNOM gene by positional cloning, characterised its structure and determined the molecular lesions in mutant alleles. Although the predicted 163 kDa GNOM protein has a conserved domain in common with the yeast secretory protein Sec7p, it is most closely related in size and overall similarity to the product of the yeastYEC2 gene, which is not essential for cell viability. Four fully complementinggnom alleles carry missense mutations in conserved regions, seven partially complementing alleles have premature stop codon mutations and two non-complementing alleles have splice-site lesions. Our results suggest that the GNOM protein acts as a complex of identical subunits and that partial complementation may involve low levels of full-length protein generated by inefficient translational read-through.Communicated by H. Saedler  相似文献   

2.
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.  相似文献   

3.
The Arabidopsis GNOM protein, a guanine nucleotide exchange factor (GEF) that acts on ADP ribosylation factor (ARF)-type G proteins, is required for coordination of cell polarity along the apical-basal embryo axis. Interallelic complementation of gnom mutants suggested that dimerization is involved in GNOM function. Here, direct interaction between GNOM molecules is demonstrated in vitro and by using a yeast two-hybrid system. Interaction was confined to an N-terminal domain conserved within a subgroup of large ARF GEFs. The same domain mediated in vitro binding to cyclophilin 5 (Cyp5), which was identified as a GNOM interactor in two-hybrid screening. Cyp5 displayed peptidylprolyl cis/trans-isomerase and protein refolding activities that were sensitive to cyclosporin A. Cyp5 protein accumulated in several plant organs and, like GNOM, was partitioned between cytosolic and membrane fractions. Cyp5 protein was also expressed in the developing embryo. Our results suggest that Cyp5 may regulate the ARF GEF function of the GNOM protein during embryogenesis.  相似文献   

4.
The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate vesicle formation by activating ARF GTPases on specific membranes in animals, plants, and fungi. However, apart from the catalytic exchange activity of the SEC7 domain, the functional significance of other conserved domains is virtually unknown. Here, we show that a distinct N-terminal domain of GNOM mediates dimerization and in addition interacts heterotypically with two other conserved domains in vivo. In contrast with N-terminal dimerization, the heterotypic interaction is essential for GNOM function, as mutations abolishing this interaction inactivate the GNOM protein and compromise its membrane association. Our results suggest a general model of large ARF-GEF function in which regulated changes in protein conformation control membrane association of the exchange factor and, thus, activation of ARFs.  相似文献   

5.
Bui QT  Zimmerman JE  Liu H  Bonini NM 《Genetics》2000,155(2):709-720
The eyes absent (eya) gene is critical to eye formation in Drosophila; upon loss of eya function, eye progenitor cells die by programmed cell death. Moreover, ectopic eya expression directs eye formation, and eya functionally synergizes in vivo and physically interacts in vitro with two other genes of eye development, sine oculis and dachshund. The Eya protein sequence, while highly conserved to vertebrates, is novel. To define amino acids critical to the function of the Eya protein, we have sequenced eya alleles. These mutations have revealed that loss of the entire Eya Domain is null for eya activity, but that alleles with truncations within the Eya Domain display partial function. We then extended the molecular genetic analysis to interactions within the Eya Domain. This analysis has revealed regions of special importance to interaction with Sine Oculis or Dachshund. Select eya missense mutations within the Eya Domain diminished the interactions with Sine Oculis or Dachshund. Taken together, these data suggest that the conserved Eya Domain is critical for eya activity and may have functional subregions within it.  相似文献   

6.
7.
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.  相似文献   

8.
The Arabidopsis GNOM gene encodes an ARF GDP/GTP exchange factor involved in embryonic axis formation and polar localisation of the auxin efflux regulator PIN1. To examine whether GNOM also plays a role in post-embryonic development and to clarify its involvement in auxin transport, we have characterised newly isolated weak gnom alleles as well as trans-heterozygotes of complementing strong alleles. These genotypes form a phenotypic series of GNOM activity in post-embryonic development, with auxin-related defects, especially in the maintenance of primary root meristem activity and in the initiation and organisation of lateral root primordia. Our results suggest a model for GNOM action mediating auxin transport in both embryogenesis and post-embryonic organ development.  相似文献   

9.
We have used a biological phenomenon that occurs inNeurospora crassa, termed Repeat-Induced Point mutation (RIP), to create partially functional mutant alleles of thealbino-3 (al-3) gene encoding geranylgeranyl pyrophosphate synthase, an enzyme involved in the biosynthesis of carotenoids and diverse prenylated compounds. A total of 70 RIP-inducedal- 3 mutants were identified by their pale albino phenotype, resulting from inactivation of carotenoid biosynthesis. Nucleotide sequence analysis of theal-3 gene in five of the RIP-induced mutants revealed that in each case RIP had introduced no more than six point mutations. The low frequency of RIP mutants (0.42%) and the isolation of only leaky mutants with very few mutations suggest that ascospores containing a heavily mutatedal-3 gene do not survive. These results are evidence that the RIP phenomenon, used to inactivate and silence duplicated genes inN. crassa, may be exploited in its mild version as a method of sequence-specific in vivo mutagenesis to obtain functional mutant alleles ofNeurospora genes. This mild form of mutagenesis may be particularly advantageous in selecting for leaky mutations in essentialNeurospora genes.  相似文献   

10.
Signal recognition particle (SRP), a ribonucleoprotein composed of six polypeptides and one RNA subunit, serves as an adaptor between the cytoplasmic protein synthetic machinery and the translocation apparatus of the endoplasmic reticulum. To begin constructing a functional map of the 7SL RNA component of SRP, we extensively mutagenized the Schizosaccharomyces pombe SRP7 gene. Phenotypes are reported for fifty-two mutant alleles derived from random point mutagenesis, seven alleles created by site-directed mutagenesis to introduce restriction sites into the SRP7 gene, nine alleles designed to pinpoint conditional lesions, and three alleles with extra nucleotides inserted at position 84. Our data indicate that virtually all single nucleotide changes as well as many multiple substitutions in this highly structured RNA are phenotypically silent. Six lethal alleles and eleven which result in sensitivity to the combination of high temperature and elevated osmotic strength were identified. These mutations cluster in conserved regions which, in the mammalian RNA, are protected from nucleolytic agents by SRP proteins. The effects of mutations in the presumptive binding site for a fission yeast SRP 9/14 homolog indicate that both the identity of a conserved residue and the secondary structure within which it is embedded are functionally important. The phenotypes of mutations in Domain IV suggest particular residues as base-specific contacts for the fission yeast SRP54 protein. A single allele which confers temperature-sensitivity in the absence of osmotic perturbants was identified in this study; the growth properties of the mutant strain suggest that the encoded RNA is somewhat defective even at the permissive temperature, and is most likely unable to correctly assemble with SRP proteins at the nonpermissive temperature.  相似文献   

11.
When the fission yeastSchizosaccharomyces pombe is starved for nitrogen, the cells are arrested in the G1 phase, enter the G0 phase and initiate sexual development. Theste13 mutant, however, fails to undergo a G1 arrest when starved for nitrogen and since this mutant phenotype is not suppressed by a mutation in adenylyl cyclase (cyr1), it would appear thatste13 + either acts independently of the decrease in the cellular cAMP level induced by starvation for nitrogen, or functions downstream of this controlling event. We have used functional complementation to clone theste13 + gene from anS. pombe genomic library and show that its disruption is not lethal, indicating that, while the gene is required for sexual development, it is not essential for cell growth. Nucleotide sequencing predicts thatste13 + should encode a protein of 485 amino acids in which the consensus motifs of ATP-dependent RNA helicases of the DEAD box family are completely conserved. Point mutations introduced into these consensus motifs abolished theste13 + functions. The predicted Ste13 protein is 72% identical to theDrosophila melanogaster Me31B protein over a stretch of 391 amino acids. ME31B is a developmentally regulated gene that is expressed preferentially in the female germline and may be required for oogenesis. Expression of ME31B cDNA inS. pombe suppresses theste13 mutation. These two evolutionarily conserved genes encoding putative RNA helicases may play a pivotal role in sexual development.  相似文献   

12.
Left ventricular outflow tract obstruction (LVOTO) comprises a spectrum of stenotic lesions. Previous studies have shown that the vascular endothelial growth factor (VEGF) signaling system plays a critical role in cardiac cushion formation, vasculogenesis, and angiogenesis. We hypothesize that VEGFA may be a potential candidate gene associated with the spectrum of LVOTO lesions. However, it remains unclear whether the VEGFA gene is responsible for the development of LVOTO malformations. In this study, we identified three exon mutations in the VEGFA gene in three of 192 nonsyndromic LVOTO patients, and the overall mutation frequency was 1.6% (3/192). The c.454C>T (p.Arg152X) nonsense mutation and c.19_22dupGACA (p.Thr8ArgfsX78) internal tandem duplication mutation each introduced a premature stop codon and are predicted to produce a truncated VEGFA protein. The c.998G>A missense mutation changes a highly conserved arginine to a glutamine at residue 333 (p.Arg333Gln). These mutations were carried by some family members, and average penetrance was 33.3%. The present study suggests, for the first time to our knowledge, that VEGFA mutations may be associated with congenital LVOTO malformations. We provide evidence that LVOTO is likely oligogenic.  相似文献   

13.
The detailed distribution and characterization of 51 hydroxylamine (HA)-induced and 59 nitrous acid (NA)-induced mutations in the intron-containing bacteriophage T4 thymidylate synthase (td) gene is reported here. Mutations were mapped in 10 regions of thetd gene by recombinational marker rescue using plasmid or M13 subclones of thetd gene. Phage crosses using deletion mutants with known breakpoints in the 3′ end of thetd intron subdivided HA and NA mutations which mapped in this region. At least 31 of the mutations map within the 1-kb group I self-splicing intron. Intron mutations mapped only in the 5′ and 3′ ends of the intron sequence, in accordance with the hypothesis that the 5′ and 3′ domains of the T4td intron are essential for correct RNA splicing. RNA sequence analysis of a number of mappedtd mutations has identified two intron nucleotides and one exon nucleotide where both HA- and NA-induced mutations commonly occur. These three loci are characterized by a GC dinucleotide, with the mutations occurring at the cytosine residue. Thus, these data indicate at least three potential sites of both HA- and NA-induced mutagenic hotspot activity within thetd gene.  相似文献   

14.
15.
Maternal homozygosity for three independent mutant hecate alleles results in embryos with reduced expression of dorsal organizer genes and defects in the formation of dorsoanterior structures. A positional cloning approach identified all hecate mutations as stop codons affecting the same gene, revealing that hecate encodes the Glutamate receptor interacting protein 2a (Grip2a), a protein containing multiple PDZ domains known to interact with membrane-associated factors including components of the Wnt signaling pathway. We find that grip2a mRNA is localized to the vegetal pole of the oocyte and early embryo, and that during egg activation this mRNA shifts to an off-center vegetal position corresponding to the previously proposed teleost cortical rotation. hecate mutants show defects in the alignment and bundling of microtubules at the vegetal cortex, which result in defects in the asymmetric movement of wnt8a mRNA as well as anchoring of the kinesin-associated cargo adaptor Syntabulin. We also find that, although short-range shifts in vegetal signals are affected in hecate mutant embryos, these mutants exhibit normal long-range, animally directed translocation of cortically injected dorsal beads that occurs in lateral regions of the yolk cortex. Furthermore, we show that such animally-directed movement along the lateral cortex is not restricted to a single arc corresponding to the prospective dorsal region, but occur in multiple meridional arcs even in opposite regions of the embryo. Together, our results reveal a role for Grip2a function in the reorganization and bundling of microtubules at the vegetal cortex to mediate a symmetry-breaking short-range shift corresponding to the teleost cortical rotation. The slight asymmetry achieved by this directed process is subsequently amplified by a general cortical animally-directed transport mechanism that is neither dependent on hecate function nor restricted to the prospective dorsal axis.  相似文献   

16.
We have analyzed a collection of 12 mutations in the Drosophila melanogaster nod locus, which encodes a kinesin-like protein involved in female meiotic chromosome segregation. The kinesin-like domain is at the N-terminus of the protein, while the C-terminal portion of the protein is unique. Four of the mutations are missense and affect highly conserved domains of the kinesin-like portion of the predicted protein, and thus demonstrate that the sequence conservation is biologically relevant. Surprisingly, two other mutations, which behave genetically as null alleles, are the result of mutations in the last exon of the nod gene. Thus, these two mutations affect the most C-terminal residues in the unique portion of the predicted protein. Based on these mutations, we suggest that this part of the protein may also be essential for wild-type function. The mutations were induced by either gamma-rays or ethyl methanesulfonate (EMS). All of the gamma-ray induced mutations were small or large chromosomal rearrangements, while all of the EMS mutations were G → A transitions. These findings are consistent with the biochemical basis of the mode of action of each mutagen.  相似文献   

17.
Analyses of the nucleotide sequences of the duplicatedAmy genes in the eight species of theDrosophila melanogaster species subgroup have revealed concerted evolution of the coding regions and divergent evolution between the duplicated genes of the 5’-flanking regions. Homogenization between the duplicated genes in the coding region is maintained by frequent genetic exchange in various portions of the coding region. On the other hand, such genetic exchange seems to produce a large amount of DNA sequence variation and protein polymorphism at the two loci within a species. The puzzling observation that concerted evolution is restricted to the coding regions seems to be explained by not only adaptive evolution of the AMY proteins in speciation but also adaptive fixation of selectively advantageous mutations in the intergenic region that differentiate expression of the twoAmy genes. We review molecular work on theAmy gene system inDrosophila, including evidence from biochemical characterization of the AMY proteins and molecular characterization of the cis regulatory elements.  相似文献   

18.
An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.  相似文献   

19.
The torpedo (top) locus of Drosophila encodes the fruitfly homolog of the vertebrate epidermal growth factor receptor gene and the neu proto-oncogene. We have isolated 13 top alleles in a screen for mutations failing to complement the female sterility of top, a recessive maternal effect allele that disrupts the establishment of the dorsoventral pattern of the egg shell and embryo. Several alleles recovered in this screen are zygotic lethal mutations; genetic analysis of these alleles has demonstrated that top is allelic to the embryonic lethal locus faint little ball. The 13 mutations recovered in our screens and 19 previously isolated top alleles have been genetically characterized through complementation tests with a series of hypomorphic and amorphic alleles. Nearly every top allele fails to complement the maternal effect sterility of top. Complementation tests show that the gene is required not only for oogenesis and embryogenesis, but also for pupal viability, for the growth of certain imaginal discs and for the patterning of specific ectodermal derivatives of the imaginal discs. Complementation analysis further demonstrates that the top lesions can be divided into general phenotypic categories: alleles affecting all gene activities in a coordinate manner, alleles preferentially affecting embryogenesis, alleles preferentially retaining oogenesis activity and alleles differentially affecting the development of specific imaginal disc derivatives. Correlations observed between the various developmental defects produced by top lesions suggest that the gene possesses several differentially, though not independently, mutable activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号