首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fructan family of oligo- and polysaccharides is a group of molecules that have long been implicated as protective agents in the drought and freezing tolerance of many plant species. However, it has been unclear whether fructans have properties that make them better protectants for cellular structures than other sugars. We compared the effects of fructans and glucans on membrane stability during air-drying. Although glucans of increasing chain length were progressively less able to stabilize liposomes against leakage of aqueous content after rehydration, fructans showed increased protection. On the other hand, glucans became more effective in protecting liposomes against membrane fusion with increasing chain length, whereas fructans became less effective. Fourier transform infrared spectroscopy showed a reduction of the gel to liquid-crystalline phase transition temperature (T(m)) of air-dried liposomes by approximately 25 degrees C in the presence of sucrose and maltose. For the respective pentasaccharides, the reduction of T(m) of the lipids was 9 degrees C lower for samples containing fructan than for those containing glucan, indicating increased sugar--membrane interactions for the fructan compared to the glucan. A reduced interaction of the longer-chain glucans and an increased interaction of the respective fructans with the phospholipid head groups in the dry state was also indicated by dramatic differences in the phosphate asymmetric stretch region of the infrared spectrum. Collectively, our data indicate that the fructo-oligosaccharides accumulated in many plant species under stress conditions could indeed play an important role in cellular dehydration tolerance.  相似文献   

2.
Fructans have been implicated in the abiotic stress tolerance of many plant species, including grasses and cereals. To elucidate the possibility that cereal fructans may stabilize cellular membranes during dehydration, we used liposomes as a model system and isolated fructans from oat (Avena sativa) and rye (Secale cereale). Fructans were fractionated by preparative size exclusion chromatography into five defined size classes (degree of polymerization (DP) 3 to 7) and two size classes containing high DP fructans (DP>7 short and long). They were characterized by high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The effects of the fructans on liposome stability during drying and rehydration were assessed as the ability of the sugars to prevent leakage of a soluble marker from liposomes and liposome fusion. Both species contain highly complex mixtures of fructans, with a DP up to 17. The two DP>7 fractions from both species were unable to protect liposomes, while the fractions containing smaller fructans were protective to different degrees. Protection showed an optimum at DP 4 and the DP 3, 4, and 5 fractions from oat were more protective than all other fractions from both species. In addition, we found evidence for synergistic effects in membrane stabilization in mixtures of low DP with DP>7 fructans. The data indicate that cereal fructans have the ability to stabilize membranes under stress conditions and that there are size and species dependent differences between the fructans. In addition, mixtures of fructans, as they occur in living cells may have protective properties that differ significantly from those of the purified fractions.  相似文献   

3.
Sugars play an important role in the desiccation tolerance of most anhydrobiotic organisms and disaccharides have been extensively investigated for their ability to stabilize model membranes in the dry state. Much less is known about the ability of oligosaccharides to protect dry membranes. However, it has been shown that different structural families of oligosaccharides have different efficacies to interact with and protect membranes during drying. Here, we have compared three families of linear oligosaccharides (fructans, malto-oligosaccharides, manno-oligosaccharides) for their chain-length dependent lyoprotective effect on egg phosphatidylcholine liposomes. We found increased protection with chain length for the fructans, a moderate decrease in protection with chain length for malto-oligosaccharides, and a strong decrease for manno-oligosaccharides. Using Fourier-transform infrared spectroscopy and differential scanning calorimetry, we show that the degree of lyoprotection of the different sugars is closely related to their influence on the gel to liquid-crystalline phase behavior of the dry membranes and to the extent of H-bonding to different groups (C=O, P=O, choline) in the lipids. Possible structural characteristics of the different oligosaccharides that may determine the extent to which they are able to interact with and protect membranes are discussed.  相似文献   

4.
Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes: sucrose:sucrose 1-fructosyltransferase [1-SST], sucrose:fructan 6-fructosyltransferase) and those using fructans (F-type enzymes: fructan:fructan 1-fructosyltransferase [1-FFT], fructan:fructan 6G-fructosyltransferase [6G-FFT]) as preferential donor substrate. Here, we report, to our knowledge for the first time, the transformation of an F-type enzyme (6G-FFT/1-FFT) into an S-type enzyme (1-SST) using perennial ryegrass 6G-FFT/1-FFT (Lp6G-FFT/1-FFT) and 1-SST (Lp1-SST) as model enzymes. This transformation was accomplished by mutating three amino acids (N340D, W343R, and S415N) in the vicinity of the active site of Lp6G-FFT/1-FFT. In addition, effects of each amino acid mutation alone or in combination have been studied. Our results strongly suggest that the amino acid at position 343 (tryptophan or arginine) can greatly determine the donor substrate characteristics by influencing the position of the amino acid at position 340. Moreover, the presence of arginine-343 negatively affects the formation of neofructan-type linkages. The results are compared with recent findings on donor substrate selectivity within the group of plant cell wall invertases and fructan exohydrolases. Taken together, these insights contribute to our knowledge of structure/function relationships within plant family 32 glycosyl hydrolases and open the way to the production of tailor-made fructans on a larger scale.  相似文献   

5.
Fructans have been implicated in the abiotic stress tolerance of many plant species, including grasses and cereals. To elucidate the possibility that cereal fructans may stabilize cellular membranes during dehydration, we used liposomes as a model system and isolated fructans from oat (Avena sativa) and rye (Secale cereale). Fructans were fractionated by preparative size exclusion chromatography into five defined size classes (degree of polymerization (DP) 3 to 7) and two size classes containing high DP fructans (DP > 7 short and long). They were characterized by high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The effects of the fructans on liposome stability during drying and rehydration were assessed as the ability of the sugars to prevent leakage of a soluble marker from liposomes and liposome fusion. Both species contain highly complex mixtures of fructans, with a DP up to 17. The two DP > 7 fractions from both species were unable to protect liposomes, while the fractions containing smaller fructans were protective to different degrees. Protection showed an optimum at DP 4 and the DP 3, 4, and 5 fractions from oat were more protective than all other fractions from both species. In addition, we found evidence for synergistic effects in membrane stabilization in mixtures of low DP with DP > 7 fructans. The data indicate that cereal fructans have the ability to stabilize membranes under stress conditions and that there are size and species dependent differences between the fructans. In addition, mixtures of fructans, as they occur in living cells may have protective properties that differ significantly from those of the purified fractions.  相似文献   

6.
Sugars play an important role in the desiccation tolerance of most anhydrobiotic organisms. It has been shown in previous studies that different structural families of oligosaccharides have different efficacies to interact with phospholipid headgroups and protect membranes from solute leakage during drying. Here, we have compared three families of linear oligosaccharides (fructans (inulins), malto-oligosaccharides, manno-oligosaccharides) for their chain-length dependent protection of egg phosphatidylcholine liposomes against membrane fusion. We found increased protection with chain length up to a degree of polymerization (DP) of 5 for malto-oligosaccharides, and a decrease for inulins and manno-oligosaccharides. Differential scanning calorimetry measurements showed that for all sugars the glass transition temperature (T g) increased with DP, although to different degrees for the different oligosaccharide families. Higher T g values resulted in reduced membrane fusion only for malto-oligosaccharides below DP5. Contrary to expectation, for inulins, manno-oligosaccharides and malto-oligosaccharides of a DP above five, fusion increased with increasing T g, indicating that other physical parameters are more important in determining the ability of different sugars to protect membranes against fusion during drying. Further research will be necessary to experimentally define such parameters.  相似文献   

7.
Sugars play an important role in the desiccation tolerance of most anhydrobiotic organisms and disaccharides have been extensively investigated for their ability to stabilize model membranes in the dry state. Much less is known about the ability of oligosaccharides to protect dry membranes. However, it has been shown that different structural families of oligosaccharides have different efficacies to interact with and protect membranes during drying. Here, we have compared three families of linear oligosaccharides (fructans, malto-oligosaccharides, manno-oligosaccharides) for their chain-length dependent lyoprotective effect on egg phosphatidylcholine liposomes. We found increased protection with chain length for the fructans, a moderate decrease in protection with chain length for malto-oligosaccharides, and a strong decrease for manno-oligosaccharides. Using Fourier-transform infrared spectroscopy and differential scanning calorimetry, we show that the degree of lyoprotection of the different sugars is closely related to their influence on the gel to liquid-crystalline phase behavior of the dry membranes and to the extent of H-bonding to different groups (CO, PO, choline) in the lipids. Possible structural characteristics of the different oligosaccharides that may determine the extent to which they are able to interact with and protect membranes are discussed.  相似文献   

8.
Freezing tolerance by vesicle-mediated fructan transport   总被引:1,自引:0,他引:1  
Fructans are fructose-based polymers associated with freezing tolerance. They might act directly via membrane stabilization or indirectly by stimulating alternative cryoprotectants. Fructans and fructan biosynthetic enzymes, in general, are believed to be present in the vacuole. This paper draws particular attention to the surprising presence of fructans and fructan exohydrolase activity in the apoplast of cold-stressed plants. This observation raises questions concerning the origin of apoplastic fructans and suggests that fructans are transported to the apoplast by post-synthesis mechanisms, perhaps induced by cold. We propose a conceptual vesicle-mediated transport model for the movement of vacuolar fructans to the apoplast, where they could assist in stabilizing the plasma membrane.  相似文献   

9.
Fructosyltransferases (FTs) are key enzymes in plants and bacteria to synthesize fructans. To gain insight on the specificity of the hexose subsites in the active site of FTs, ethylene glycol fructoside (EGF) and glycerol fructoside (GF), containing fructose in the furanose configuration, were synthesized in vitro and used as substrates to study the effect on the activity of bacterial levansucrase (BsLS), chicory root sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT). The results demonstrated that EGF and GF, at physiologically relevant concentrations, were efficient acceptor substrates for BsLS and 1-FFT, but not for 1-SST. EGF and GF cannot be used as donor substrates for BsLS, 1-SST and 1-FFT. A model is proposed to explain the subsite specificity differences between the three FTs involved in this study.  相似文献   

10.
Fructans are multifunctional fructose‐based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so‐called “fructan syndrome,” is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.  相似文献   

11.
Fructans, a family of oligo- and polyfructoses, are implicated to play a drought-protecting role in plants. Inulin-type fructan is able to preserve the membrane barrier during dehydration. However, whether other fructans would be able to perform this function is unknown. In addition, almost nothing is known about the organization of these systems, which could give insight into the protective mechanism. To get insight into these questions the effect of different fructans on phosphatidylcholine-based model systems under conditions of dehydration was analyzed. Using a vesicle leakage assay, it was found that both levan- and inulin-type fructans protected the membrane barrier. This suggests that fructans in general would be able to protect the membrane barrier function. Furthermore, both fructan-types inhibited vesicle fusion to a large extent as measured using a lipid-mixing assay. Using x-ray diffraction, it was found that in the presence of both inulin- and levan-type fructans the lamellar repeat distance increased considerably. From this it was concluded that fructans are present between the lipid bilayers during drying. Furthermore, they stabilize the L(alpha) phase. In contrast to fructans, dextran did not increase the lamellar repeat distance and it even promoted L(beta) phase formation. These data support the hypothesis that fructans can have a membrane-protecting role during dehydration, and give insight into the mechanism of protection.  相似文献   

12.
实验显示,一种氨基酸混合液(含异亮氨酸、甲硫氨酸和苯丙氨酸,添加浓度分别为1.0、0.5和2.0g/L)能显著提高自絮凝酵母——粟酒裂殖酵母和酿酒酵母融合株SPSC的耐酒精能力。实验将菌体分别培养于添加(试验组)和未添加(对照组)该氨基酸混合液的条件下,然后收集菌体进行酒精(20%,V/V)冲击试验(30℃,9h),结果,试验组的菌体尚有一半以上的存活细胞,而对照组的菌体全部死亡。通过对试验组和对照组的菌体细胞膜蛋白质氨基酸组成分析发现,试验组的菌体耐酒精能力提高与所添加氨基酸组入菌体的细胞膜密切相关。以DPH为荧光探针的细胞膜流动性测定分析进一步揭示,氨基酸组入菌体的细胞膜后,细胞膜能有效抵抗高浓度酒精冲击诱发的膜流动性的提高,从而维持膜的稳定。因此,实验首次揭示膜蛋白氨基酸组成可通过改变膜流动性而影响酵母菌的耐酒精能力。  相似文献   

13.
The aim of this study was to evaluate the putative role of the sucrosyl-galactosides, loliose [alpha-D-Gal (1,3) alpha-D-Glc (1,2) beta-D-Fru] and raffinose [alpha-D-Gal (1,6) alpha-D-Glc (1,2) beta-D-Fru], in drought tolerance of perennial ryegrass and to compare it with that of fructans. To that end, the loliose biosynthetic pathway was first established and shown to operate by a UDP-Gal: sucrose (Suc) 3-galactosyltransferase, tentatively termed loliose synthase. Drought stress increased neither the concentrations of loliose and raffinose nor the activities of loliose synthase and raffinose synthase (EC 2.4.1.82). Moreover, the concentrations of the raffinose precursors, myoinositol and galactinol, as well as the gene expressions of myoinositol 1-phosphate synthase (EC 5.5.1.4) and galactinol synthase (EC 2.4.1.123) were either decreased or unaffected by drought stress. Taken together, these data are not in favor of an obvious role of sucrosyl-galactosides in drought tolerance of perennial ryegrass at the vegetative stage. By contrast, drought stress caused fructans to accumulate in leaf tissues, mainly in leaf sheaths and elongating leaf bases. This increase was mainly due to the accumulation of long-chain fructans (degree of polymerization > 8) and was not accompanied by a Suc increase. Interestingly, Suc but not fructan concentrations greatly increased in drought-stressed roots. Putative roles of fructans and sucrosyl-galactosides are discussed in relation to the acquisition of stress tolerance.  相似文献   

14.
Vacuolar invertases (VIs) degrade sucrose to glucose and fructose. Additionally, the fructan plant wheat (Triticum aestivum) contains different fructosyltransferases (FTs), which have evolved from VIs by developing the capacity to bind sucrose or fructans as acceptor substrates. Modelling studies revealed a hydrogen bonding network in the conserved WMNDPNG motif of VIs, which is absent in FTs. In this study, the hydrogen bonding network of wheat VI was disrupted by site-directed mutagenesis in the 23WMNDPNG29 motif. While the single mutants (W23Y, N25S) showed a moderate increase in 1-kestose production, a synergistic effect was observed for the double mutant (W23Y+N25S), showing a 17-fold increase in transfructosylation capacity, and becoming a real sucrose:sucrose 1-fructosyltransferase. Vacuolar invertases are fully saturable enzymes, contrary to FTs. This is the first report on the development of a fully saturable FT with respect to 1-kestose formation. The superior kinetics (K(m) approximately 43 mM) make the enzyme useful for biotechnological applications. The results indicate that changes in the WMNDPNG motif are necessary to develop transfructosylating capability. The shift towards smaller and/or more hydrophilic residues in this motif might contribute to the formation of a specific acceptor site for binding of sugar, instead of water.  相似文献   

15.
In nature, no single plant completes its life cycle withoutencountering environmental stress. When plant cells surpassstress threshold stimuli, chemically reactive oxygen species(ROS) are generated that can cause oxidative damage or act assignals. Plants have developed numerous ROS-scavenging systemsto minimize the cytotoxic effects of ROS. The role of sucrosyloligosaccharides (SOS), including fructans and the raffinosefamily oligosaccharides (RFOs), is well established during stressphysiology. They are believed to act as important membrane protectorsin planta. So far a putative role for sucrose and SOS duringoxidative stress has largely been neglected, as has the contributionof the vacuolar compartment. Recent studies suggest a link betweenSOS and oxidative defence and/or scavenging. SOS might be involvedin stabilizing membrane-associated peroxidases and NADPH oxidases,and SOS-derived radicals might fulfil an intermediate role inoxido-reduction reactions taking place in the vicinity of membranes.Here, these emerging features are discussed and perspectivesfor future research are provided. Key words: Fructan, oxidative stress, raffinose, ROS, sucrose, sucrosyl oligosaccharides Received 25 September 2008; Revised 20 October 2008 Accepted 23 October 2008  相似文献   

16.
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.  相似文献   

17.
生物膜是将细胞与环境分开的第一道屏障,是环境胁迫造成损伤的主要位点.脂肪酸是生物膜的主要组成成分,不饱和脂肪酸在决定生物膜的生理特性中具有重要作用,增加脂肪酸的不饱和程度能增加膜脂的流动性.近年来,很多研究发现,生物通过脂肪酸脱饱和维持膜的流动性来适应外界环境变化.本文主要从不饱和脂肪酸在环境温度胁迫、盐胁迫、氧化胁迫、酸碱胁迫、干旱胁迫、乙醇胁迫及铝胁迫中的作用研究进展进行了综述.  相似文献   

18.
Dissecting the roles of osmolyte accumulation during stress   总被引:38,自引:0,他引:38  
Many plants accumulate organic osmolytes in response to the imposition of environmental stresses that cause cellular dehydration. Although an adaptive role for these compounds in mediating osmotic adjustment and protecting subcellular structure has become a central dogma in stress physiology, the evidence in favour of this hypothesis is largely correlative. Transgenic plants engineered to accumulate proline, mannitol, fructans, trehalose, glycine betaine or ononitol exhibit marginal improvements in salt and/or drought tolerance. While these studies do not dismiss causative relationships between osmolyte levels and stress tolerance, the absolute osmolyte concentrations in these plants are unlikely to mediate osmotic adjustment. Metabolic benefits of osmolyte accumulation may augment the classically accepted roles of these compounds. In re-assessing the functional significance of compatible solute accumulation, it is suggested that proline and glycine betaine synthesis may buffer cellular redox potential. Disturbances in hexose sensing in transgenic plants engineered to produce trehalose, fructans or mannitol may be an important contributory factor to the stress-tolerant phenotypes observed. Associated effects on photoassimilate allocation between root and shoot tissues may also be involved. Whether or not osmolyte transport between subcellular compartments or different organs represents a bottleneck that limits stress tolerance at the whole-plant level is presently unclear. None the less, if osmolyte metabolism impinges on hexose or redox signalling, then it may be important in long-range signal transmission throughout the plant.  相似文献   

19.
20.
We aimed to study the protection of wheat plasma membrane (PM) under cold stress (0–2 °C) by the overaccumulation of glycine betaine (GB). For this, we used wild-type winter wheat (Triticum aestivum L.) cv. Shi 4185 (WT) and 3 transgenic lines (T1, T4, and T6) expressing the BADH gene isolated from Atriplex hortensis L. Under cold stress, the transgenic lines with higher GB content maintained better membrane integrity and higher plasma membrane H+-ATPase activity than WT. In these transgenic lines, ROS production and membrane lipid peroxidation were lower, while antioxidative enzyme activities and compatible solute contents were higher in comparison with WT. This may be attributable to their enhanced cold-stress tolerance mediated by GB overproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号