首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complementary DNA encoding Rhizopus niveus lipase (RNL) was isolated from the R. niveus IF04759 cDNA library using a synthetic oligonucleotide corresponding to the amino acid sequence of the enzyme. A clone, which had an insert of 1.0 kilobase pairs, was found to contain the coding region of the enzyme. The lipase gene was expressed in Escherichia coli as a lacZ fusion protein. The mature RNL consisted of 297 amino acid residues with a molecular mass of 32 kDa. The RNL sequence showed significant overall homology to Rhizomucor miehei lipase and the putative active site residues were strictly conserved.  相似文献   

2.
A novel strain of Rhizopus oryzae WPG secretes a noninduced lipase (ROLw) in the culture medium; purified ROLw is a protein of 29 kDa, the 45 N-terminal amino acid residues were sequenced, this sequence is very homologous to Rhizopus delemar lipase (RDL), Rhizopus niveus lipase (RNL) and R. oryzae lipase (ROL29) sequences; the cloning and sequencing of the part of the gene encoding the mature ROLw, shows two nucleotides differences with RDL, RNL and ROL29 sequences corresponding to the change of the residues 134 and 200; ROLw does not present the interfacial activation phenomenon when using tripropionin or vinyl propionate as substrates; the lipase activity is maximal at pH 8 and at 37 degrees C, specific activities of 3500 or 900 U mg(-1) were measured at 37 degrees C and at pH 8, using olive oil emulsion or tributyrin as substrates, respectively; ROLw is unable to hydrolyse triacylglycerols in the presence of high concentration of bile salts; it is a serine enzyme as it is inhibited by tetrahydrolipstatin and was stable between pH 5 and pH 8.  相似文献   

3.
Rhizopus oryzae lipase (ROL) was found to be a true lipase. This enzyme presents the interfacial activation phenomenon. The N-terminal amino acid sequence of ROL was compared to those of rhizopus lipases. Purified ROL possesses the same N-terminal sequence as the mature Rhizopus niveus lipase (RNL). This sequence was found in the last 28 amino acids of the propeptide sequence derived from the cDNA of Rhizopus delemar lipase (RDL). Using the baro-stat method, we have measured the hydrolysis rate of dicaprin films by ROL as a function of surface pressure. Our results show that Rhizopus oryzae lipase is markedly stereoselective of the sn-3 position of the 2,3 enantiomer of dicaprin. Polyclonal antibodies (PAB) directed against ROL have been produced and purified by immunoaffinity. The effects of these PAB on the interfacial behavior of ROL were determined. The immunoblot analysis with polyclonal antibodies anti-ROL (PAB anti-ROL) and various lipases shows a cross-immunoreactivity between the lipase from the rhizopus family (Rhizopus delemar lipase and Rhizopus arrhizus lipase).  相似文献   

4.
A gene encoding Rhizopus niveus aspartic proteinase was isolated from an R. niveus genomic library by using oligonucleotides probes corresponding to its partial amino acid sequence, and its nucleotide sequence was determined. By comparing its deduced amino acid sequence with the amino acid sequence of rhizopuspepsin (5, 26), we concluded that the R. niveus aspartic proteinase gene has an intron within its coding region and that it has a preproenzyme sequence of 66 amino acids upstream of the mature enzyme of 323 amino acids.  相似文献   

5.
Rhizopus niveus lipase (RNL) has a unique structure consisting of two noncovalently bound polypeptides (A-chain and B-chain). To improve this enzyme's properties by protein engineering, we have developed a new expression system for the production of recombinant lipase in the yeast Saccharomyces cerevisiae. For the present study, we developed a more efficient expression system using the strain ND-12B and the multicopy-type plasmid pJDB219. We purified two types of recombinant lipases, each to a single peak by gel-filtration HPLC, although they were found to be heterogeneous by SDS-PAGE. Analysis of reversed-phase HPLC, N-terminal amino acid sequence, and sugar content showed that the difference between the two types of lipases was due mainly to their sugar content (high or low mannose type). Moreover, there were two species within each type of lipase. One kind was processed to the A-chain and B-chain as in the native lipase, while the other remained unprocessed. Although these yeast-purified lipases contained several posttranslational modifications and different glycosylations, their secondary structures were the same as those of the native lipase as measured by circular dichroism spectra and determination of disulfide bonding. This suggests that protein folding of the recombinant lipase occurred correctly in yeast.  相似文献   

6.
Purified rat lingual lipase (EC3113), a glycoprotein of approximate molecular weight 52,000, was used to generate polyclonal antibodies which were able to recognise the denatured and deglycosylated enzyme. These immunoglobulins were used to screen a cDNA library prepared from mRNA isolated from the serous glands of rat tongue cloned in E. coli expression vectors. An almost full length cDNA clone was isolated and the nucleotide and predicted amino acid sequence obtained. Comparison with the N-terminal amino acid sequence of the purified enzyme confirmed the identity of the cDNA and indicated that there was a hydrophobic signal sequence of 18 residues. The amino acid sequence of mature rat lingual lipase consists of 377 residues and shares little homology with porcine pancreatic lipase apart from a short region containing a serine residue at an analogous position to the ser 152 of the porcine enzyme.  相似文献   

7.
Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and 60 degrees . A broad range of lipase substrates, from C4 to C18 rho-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was rho-nitrophenyl caproate (C6). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family I.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, Ser131, His330, and Asp308, which composed the catalytic triad of the enzyme.  相似文献   

8.
Random mutagenesis was used to improve the optimum temperature for Rhizopus niveus lipase (RNL) activity. The lipase gene was mutated using the error-prone PCR technique. One desirable mutant was isolated, and three amino acids were substituted in this mutant (P18H, A36T and E218V). The wild-type and this randomly mutated lipase were both purified and characterized. The specific activity of the mutant lipase was 80% that of the wild-type. The optimum temperature of the mutant lipase was higher by 15 degrees C than that of the wild-type. To confirm which substitution contributed to enhancing the optimum temperature for enzymic activity, two chimeric lipases from the wild-type and randomly mutated gene were constructed: chimeric lipase 1 (CL-1; P18H and A36T) and chimeric lipase 2 (CL-2; E218V). Each of the chimeric enzymes was purified, and the optimum temperature for lipase activity was measured. CL-1 had a similar optimum temperature to that of the wild-type, and CL-2 had a higher temperature like the randomly mutated lipase. The mutational effect is interpreted in terms of a three-dimensional structure for the wild-type lipase.  相似文献   

9.
Lipase from Rhizopus niveus (RNL) has a complex structure, and recombinant RNL, has even more complex structural properties in the yeast, Saccharomyces cerevisiae. These properties are due to the processing and to the size of the glycosylated sugar chain. The processing site was presumed to be that for the proteinase product of the KEX2 gene in yeast. We therefore, constructed an expression system in which the KEX2 gene was disrupted to produce a non-processed type of lipase with high thermal stability. This type of lipase was thermally stable to a temperature 15 degrees C higher than that of each processed type of lipase. This non-processed lipase had 50% residual activity after 2 h at 50 degrees C, while the residual activity of the processed lipases was only 10% after 30-45 min of incubation at 50 degrees C. The CD spectrum of the non-processed type of lipase at 222 nm was almost unchanged by heating, suggesting that this group of lipases had a very rigid structure and that the peptide bond between the A- and B-chain contributed to maintain this rigid structure. On the other hand, the length of the sugar chain bound to the lipase had no effect on the thermal stability.  相似文献   

10.
The full-length cDNA encoding RNase Rh, which is secreted extracellularly by Rhizopus niveus, was isolated and its nucleotide sequence was determined. It was placed under control of the promoter of the glyceraldehyde 3-phosphate dehydrogenase gene of Saccharomyces cerevisiae in a high expression vector in yeast. Since yeast cells transformed by this plasmid poorly secreted RNase into the medium, the plasmid pYE RNAP-Rh was constructed, in which the signal sequence of RNase Rh was replaced by the prepro-sequence of aspartic proteinase-I, one of the extracellular enzymes secreted by R. niveus. Yeast cells harboring pYE RNAP-Rh produced RNase efficiently (ca. 40 micrograms/ml) into the medium. The product was a mixture of six enzymes (RNase RNAP-Rhs) having 3, 5, 9, 13, 14, and 16 additional amino acid residues attached to the amino terminus of the mature RNase Rh. The major product was the RNase with three additional amino acids at the amino terminus. Limited digestion of RNase RNAP-Rhs with staphylococcal V8 protease succeeded in shortening the various lengths of extra amino acid residues attached to the amino terminus of RNase Rh, yielding an RNase that has 3 additional amino acids at the amino terminus. It has been named RNase RNAP-Rh. The RNase RNAP-Rh showed the same specific activity and CD spectra as those of RNase Rh, suggesting that the two have similar conformations to each other around aromatic amino acid residues and the peptide backbone.  相似文献   

11.
Aspergillus oryzae produces at least three extracellular lipolytic enzymes, L1, L2 and L3 (cutinase, mono- and diacylglycerol lipase, and triacylglycerol lipase, respectively). We cloned the triacylglycerol lipase gene (provisionally designated tglA) by screening a genomic library using a PCR product obtained with two degenerate oligonucleotide primers corresponding to amino acid sequences of L3 as probes. Nucleotide sequencing of the genomic DNA and cDNA revealed that the L3 gene (tglA) has an open reading frame comprising 954 nucleotides, which contains three introns of 47, 83 and 62 bp. The deduced amino acid sequence of the tglA gene corresponds to 254 amino acid residues including a signal sequence of 30 amino acids and, in spite of the difference in substrate specificity, it is homologous to those of cutinases from fungi. Three residues presumed to form the catalytic triad, Ser, Asp and His, are conserved. The cloned cDNA of the tglA gene was expressed in Escherichia coli, and enzyme assaying and zymography revealed that the cloned cDNA encodes a functional triacylglycerol lipase.  相似文献   

12.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same.  相似文献   

13.
The complete primary structure of a base non-specific and adenylic acid preferential RNase (RNase M) from Aspergillus saitoi was determined. The sequence was determined by analysis of the peptides generated by digestion of heat-denatured RNase M with lysylendopeptidase, and the peptides generated from RCM RNase M by digestion with staphylococcal V8 protease or chemical cleavage with BrCN. It consisted of 238 amino acid residues and carbohydrate moiety attached to the 74th asparagine residue. The molecular weight of the protein moiety deduced from the sequence was 26,596. The locations of 10 half cystine residues are almost superimposable on those of RNase Rh from Rhizopus niveus and RNase T2 from Aspergillus oryzae which have similar base specificity. The homology between RNase M and RNase Rh and RNase T2 amounted to 97 and 160 amino acid residues, respectively. The amino acid sequences conserved in the three RNases are concentrated around the three histidine residues, which are supposed to form part of the active sites of these RNases.  相似文献   

14.
The gene coding for an extracellular lipase of Bacillus licheniformis was cloned using PCR techniques. The sequence corresponding to the mature lipase was subcloned into the pET 20b(+) expression vector to construct a recombinant lipase protein containing 6 histidine residues at the C-terminal. High-level expression of the lipase by Escherichia coli cells harbouring the lipase gene-containing expression vector was observed upon induction with IPTG at 30 degrees C. A one step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified enzyme was 130 units/mg with p-nitrophenyl-palmitate as substrate. The enzyme showed maximum activity at pH 10-11.5 and was remarkably stable at alkaline pH values up to 12. The enzyme was active toward p-nitrophenyl esters of short to long chains fatty acids but with a marked preference for esters with C(6) and C(8) acyl groups. The amino acid sequence of the lipase shows striking similarities to lipases from Bacillus subtilis and Bacillus pumilus. Based on the amino acid identity and biochemical characteristics, we propose that Bacillus lipases be classified into two distinct subfamilies of their own.  相似文献   

15.
Abstract A facultatively anaerobic bacterium producing an extracellular alkaline lipase was isolated from the soil collected near a sewage disposal plant in Korea and identified to be a strain of Proteus vulgaris . The molecular mass of the purified lipase K80 was estimated to be 31 kDa by SDS-PAGE. It was found to be an alkaline enzyme having maximum hydrolytid activity at pH 10, while fairly stable in a wide pH range from 5 to 11. The gene for lipase K80 was cloned in Escherichia coli . Sequence analysis showed an open reading frame of 861 bp coding for a polypeptide of 287 amino acid residues. The deduced amino acid sequence of the lipase gene had 46.3% identity to the lipase from Pseudomonas fragi .  相似文献   

16.
白地霉Y162脂肪酶基因克隆及其在毕赤酵母中的高效表达   总被引:2,自引:0,他引:2  
借助生物信息学,对已克隆的地霉属脂肪酶全长基因序列进行同源比对,根据保守序列设计引物,在基因组DNA和cDNA水平上,于国内首次克隆了Geotrichum candidum Y162脂肪酶基因.Gcandidum Y162脂肪酶基因全长1692bp,不含内含子,编码包括19个氨基酸信号肽在内的563个氨基酸.与NCBI GenBank中已报道的地霉属脂肪酶氨基酸序列有86%的一致性.将该基因克隆到pPIC9K表达载体上,转化毕赤酵母GS115,摇瓶发酵96h后毕赤酵母分泌表达55 U/mL重组脂肪酶,实现了脂肪酶的高效表达.酶学性质研究表明,该重组脂肪酶对C9位顺式双键的甘油酯具有明显的底物特异性;对甲醇、甘油等有机溶剂呈现耐受性;最适温度和最适pH分别为50℃和8.0,在pH6.0~10.0及60℃以下能保持60%以上的酶活力.底物特异性、有机溶剂、温度及pH耐受性赋予该重组酶良好工业应用潜力.  相似文献   

17.
An extracellular lipase from Streptomyces rimosus R6-554W has been recently purified and biochemically characterized. In this report the cloning, sequencing, and high-level expression of its gene is described. The cloned DNA contained an ORF of 804 bp encoding a 268-amino-acid polypeptide with 34 amino acid residues at the amino terminus of the sequence that were not found in the mature protein. The theoretical molecular mass (24.172 kDa) deduced from the amino acid sequence of the mature enzyme was experimentally confirmed. This lipase showed no overall amino acid sequence similarity to other lipases in the databases. However, two hypothetical proteins, i. e. putative hydrolases, derived from the genome sequencing data of Streptomyces coelicolor A3(2), showed 66% and 33% identity. In addition, a significant similarity to esterases from Streptomyces diastatochromogenes and Aspergillus terreus was found. Sequence analysis revealed that our novel S. rimosus lipase containing a GDS(L)-like consensus motif belongs to family II of lipolytic enzymes, previously unrecognized in Streptomyces. When the lipase gene was expressed in a S. rimosus lipase-deficient strain harboring the lipase gene on a high-copy-number vector, lipase activity was 22-fold higher than in the original strain.  相似文献   

18.
19.
根据黑曲霉F044脂肪酶N-端氨基酸序列,运用生物信息学方法,找到与黑曲霉脂肪酶基因同源的候选基因A84689。根据该基因序列,设计引物直接PCR扩增得到黑曲霉脂肪酶全长基因anl。anl全长1044bp,含3个内含子,编码297个氨基酸(含信号肽27个氨基酸),与其它脂肪酶基因没有明显同源性。将编码成熟脂肪酶的anl连接到pET28a载体上得到重组表达质粒,转化大肠杆菌BL21(De3),诱导表达并纯化出目的蛋白。通过大量稀释和DEAESepharoseFastFlow层析相结合的方法,变性后的纯化蛋白在体外实现再折叠复性。  相似文献   

20.
Penicillium cyclopium, grown in stationary culture, produces a type I lipase specific for triacylglycerols while, in shaken culture, it produces a type II lipase only active on partial acylglycerols. Lipase II has been purified by ammonium sulfate precipitation and chromatographies on Sephadex G-75 and DEAE-Sephadex. The enzyme exists in several glycosylated forms of 40-43 kDa, which can be converted to a single protein of 37 kDa by enzymatic deglycosylation. Activity of lipase II is maximal at pH 7.0 and 40 degrees C. The enzyme is stable from pH 4.5 to 7.0. Activity is rapidly lost at temperatures above 50 degrees C. The enzyme specifically hydrolyzes monoacylglycerols and diacylglycerols, especially of medium chain fatty acids. The sequence of the 20 first amino acid residues is similar to the N-terminal region of P. camembertii lipase and partially similar to lipases from Humicola lanuginosa and Aspergillus oryzae, but is different from Penicillium cyclopium lipase I. However, it can be observed that residues of valine and serine at positions 2 and 5 in Penicillium cyclopium lipase II are conserved in Penicillium expansum lipase, of which 16 out of the 20 first amino acid residues are similar to Penicillium cyclopium lipase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号