首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose-dependent insulinotropic polypeptide (GIP) is an insulinotropic incretin hormone that stimulates insulin secretion during a meal. GIP has glucose lowering abilities and hence is considered as a potential target molecule for type 2 diabetes therapy. In this article, we present the solution structure of GIP in membrane-mimicking environments by proton NMR spectroscopy and molecular modelling. GIP adopts an α-helical conformation between residues Phe(6)-Gly(31) and Ala(13)-Gln(29) for micellar and bicellar media, respectively. Previously we examined the effect of N-terminal Ala substitution in GIP, but here eight GIP analogues were synthesised by replacing individual residues within the central 8-18 region with alanine. These studies showed relatively minor changes in biological activity as assessed by insulin releasing potency. However, at higher concentration, GIP(Ala(16)), and GIP(Ala(18)) showed insulin secreting activity higher than the native GIP (P<0.01 to P<0.001) in cultured pancreatic BRIN-BD11 cells. Receptor interaction studies of the native GIP with the extracellular domain of its receptor were performed by using two different docking algorithms. At the optimised docking conformation, the complex was stabilised by the presence of hydrophobic interactions and intermolecular hydrogen bonding. Further, we have identified some potentially important additional C-terminal interactions of GIP with its N-terminal extracellular receptor domain.  相似文献   

2.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal incretin hormone, which modulates physiological insulin secretion. Because of its glucose-sensitive insulinotropic activity, there has been a considerable interest in utilizing the hormone as a potential treatment for type 2 diabetes. Structural parameters obtained from NMR spectroscopy combined with molecular modeling techniques play a vital role in the design of new therapeutic drugs. Therefore, to understand the structural requirements for the biological activity of GIP, the solution structure of GIP was investigated by circular dichroism (CD) followed by proton nuclear magnetic resonance (NMR) spectroscopy. CD studies showed an increase in the helical character of the peptide with increasing concentration of trifluoroethanol (TFE) up to 50%. Therefore, the solution structure of GIP in 50% TFE was determined. It was found that there was an alpha-helix between residues 6 and 29, which tends to extend further up to residue 36. The implications of the C-terminal extended helical segment in the inhibitory properties of GIP on gastric acid secretion are discussed. It is shown that the adoption by GIP of an alpha-helical secondary structure is a requirement for its biological activity. Knowledge of the solution structure of GIP will help in the understanding of how the peptide interacts with its receptor and aids in the design of new therapeutic agents useful for the treatment of diabetes.  相似文献   

3.
Ding KH  Isales CM  Zhong Q  Bollag RJ 《Peptides》2001,22(4):575-582
To generate functional fluorescently tagged glucose-dependent insulinotropic polypeptide (GIP), a series of GIP expression constructs were devised. These included G1 (complete preprohormone), G2 (lacking the C-terminal extension), G3 (lacking both N- and C-terminal extensions), G4 (G2 fused to green fluorescent protein, GFP), and G5 (G3 fused to GFP). Expression of G5 in bacteria generated immunopositive GIP together with GFP fluorescence, while G4 generated only fluorescence without immunoreactivity. Transfection of NIH3T3 cells with cDNAs of G1, G3, G5, but not G2, G4, and EGFP, resulted in immunologically detectable GIP formation, although fluorescence could be detected in the latter two. GIP as well as GIP-GFP secreted by NIH3T3 cells significantly stimulated intracellular cAMP accumulation and Ca(2+) mobilization in SaOS2 cells. The GIP receptor antagonist GIP(7-30) abolished these responses. These results suggest that a GIP-GFP fusion protein seven times larger than the native peptide retains function and may be used as an in vivo probe to detect GIP receptor distribution and to explore GIP's biological roles.  相似文献   

4.
Six GIP(1-NH2) analogs were synthesized with modifications (de-protonation, N-methylation, reversed chirality, and substitution) at positions 1, 3, and 4 of the N-terminus, and additionally, a cyclized GIP derivative was synthesized. The relationship between altered structure to biological activity was assessed by measuring receptor binding affinity and ability to stimulate adenylyl cyclase in CHO-K1 cells transfected with the wild-type GIP receptor (wtGIPR). These structure-activity relationship studies demonstrate the importance of the GIP N-terminus and highlight structural constraints that can be introduced in GIP analogs. These analogs may be useful starting points for design of peptides with enhanced in vivo bioactivity.  相似文献   

5.
Glucose-dependent insulinotropic polypeptide (GIP) release has been demonstrated predominantly after ingestion of carbohydrate and fat. These studies were conducted to determine the effects of protein on GIP expression in the rat. Whereas no significant changes in duodenal mucosal GIP mRNA levels were detected in response to peptone, the duodenal GIP concentration increased from 8.4+/-1.5 to 19.8+/-3.2 ng GIP/mg protein at 120 min (P<0.01). Plasma GIP levels also increased from 95+/-5.2 pg/ml to a peak of 289+/-56.1 pg/ml at 120 min (P<0.01). To determine whether the effects of protein on GIP were due to stimulation of acid secretion, rats were pretreated with 10 mg/kg omeprazole, after which mucosal and plasma GIP concentrations were partially attenuated. To further examine the effects of luminal acid, rats were administered intraduodenal 0.1 M HCl for 120 min, which significantly enhanced GIP expression. These studies indicate that nutrient protein provides a potent stimulus for GIP expression in the rat, an effect that occurs at the posttranslational level and may be mediated in part through the acid-stimulatory properties of protein. The effects of acid on GIP are consistent with a role for GIP as an enterogastrone in the rat.  相似文献   

6.
7.
8.
The N-terminal domain of glucose-dependent insulinotropic polypeptide (GIP) plays an important role in regulating biological activity. This study examined biological properties of several N-terminal truncated forms of GIP and two novel forms with substitutions at Phe position-6 with Arg or Val. GIP(6-42), GIP(R6-42), GIP(V6-42), GIP(7-42) and GIP(9-42) stimulated cAMP production in BRIN-BD11 cells similar to native GIP, whereas responses to GIP(3-42), GIP(4-42), GIP(5-42) and GIP(8-42) were reduced (P < 0.01 to P < 0.001). GIP-induced cyclic AMP production was significantly inhibited by GIP(3-42), GIP(4-42), GIP(5-42), GIP(6-42), GIP(R6-42), GIP(7-42) and GIP(8-42) (P < 0.001). Compared with native GIP, in vitro insulinotropic activity of GIP(3-42), GIP(4-42), GIP(5-42), GIP(7-42) and GIP(8-42) was reduced (P < 0.05 to P < 0.001), with GIP(4-42), GIP(5-42), GIP(7-42) and GIP(8-42) also potently inhibiting GIP-stimulated insulin secretion (P < 0.001). In ob/ob mice, GIP(4-42) and GIP(8-42) increased (P < 0.05 to P < 0.01) plasma glucose concentrations compared to the glucose-lowering action of native GIP. When GIP(8-42) was co-administered with native GIP it countered the ability of the native peptide to lower plasma glucose and increase circulating insulin concentrations. These data confirm the importance of the N-terminal region of GIP in regulating bioactivity and reveal that sequential truncation of the peptide yields novel GIP receptor antagonists which may have functional significance.  相似文献   

9.
The glucose-dependent insulinotropic polypeptide (GIP) gene is believed to have originated from a gene duplication event very early in vertebrate evolution that also produced the proglucagon gene, yet so far GIP has only been described within mammals. Here we report the identification of GIP genes in chicken, frogs, and zebrafish. The chicken and frog genes are organized in a similar fashion to mammalian GIP genes and contain 6 exons and 5 introns in homologous locations. These genes can also potentially be proteolytically processed in identical patterns as observed in the mammalian sequences that would yield a GIP hormone that is only one amino shorter than the mammalian sequences due to the removal of an extra basic residue by carboxypeptidase E. The zebrafish GIP gene and precursor protein is shorter than other vertebrate GIP genes and is missing exon 5. The predicted zebrafish GIP hormone is also shorter, being only 31 amino acids in length. The zebrafish GIP hormone is similar in length to the proglucagon-derived peptide hormones, peptides encoded from the gene most closely related to GIP. We suggest that the structure of zebrafish GIP is more similar to the ancestral gene, and that tetrapod GIP has been extended. The mammalian GIP hormone has also undergone a period of rapid sequence evolution early in mammalian evolution. The discovery of a conserved GIP in diverse vertebrate suggests that it has an essential role in physiology in diverse vertebrates, although it may have only recently evolved a role as an incretin hormone.  相似文献   

10.
Cold acclimation is initially associated with shivering thermogenesis in skeletal muscle followed by adaptive non-shivering thermogenesis, particularly in brown adipose tissue (BAT). In response, hyperphagia occurs to meet increased metabolic demand and thermoregulation. The present study investigates the effects of cold (4 ± 1 °C) acclimation and hyperphagia on circulating and intestinal levels of gastric inhibitory polypeptide (GIP) in rats. Pair fed animals were used as additional controls in some experiments. Cold acclimation for 42 days significantly (p<0.01) increased daily food intake. There was no corresponding change in body weight. However, body weights of pair fed cold exposed rats were significantly (p<0.01) reduced compared to controls and ad libitum fed cold exposed rats. By day 42, non-fasting plasma glucose was increased (p<0.05) by chronic cold exposure regardless of food intake. Corresponding plasma insulin concentrations were significantly (p<0.01) lower in pair fed cold exposed rats. Circulating GIP levels were elevated (p<0.05) in ad libitum fed cold acclimated rats on days 18 and 24, but returned to normal levels by the end of the study. The glycaemic response to oral glucose was improved (p<0.01) in all cold exposed rats, with significantly (p<0.05) elevated GIP responses in ad libitum fed rats and significantly (p<0.05) reduced insulin responses in pair fed rats. In keeping with this, insulin sensitivity was enhanced (p<0.05) in cold exposed rats compared to controls. By the end of the study, cold acclimated rats had significantly (p<0.01) increased BAT mass and intestinal concentrations of GIP and GLP-1 compared to controls, independent of food intake. These data indicate that changes in the secretion and actions of GIP may be involved in the metabolic adaptations to cold acclimation in rats.  相似文献   

11.
The gastric peptide ghrelin promotes energy storage, appetite, and food intake. Nutrient intake strongly suppresses circulating ghrelin via molecular mechanisms possibly involving insulin and gastrointestinal hormones. On the basis of the growing evidence that glucose-dependent insulinotropic polypeptide (GIP) is involved in the control of fuel metabolism, we hypothesized that GIP and/or insulin, directly or via changes in plasma metabolites, might affect circulating ghrelin. Fourteen obese subjects were infused with GIP (2.0 pmol·kg(-1)·min(-1)) or placebo in the fasting state during either euglycemic hyperinsulinemic (EC) or hyperglycemic hyperinsulinemic clamps (HC). Apart from analysis of plasma ghrelin and insulin levels, GC-TOF/MS analysis was applied to create a hormone-metabolite network for each experiment. The GIP and insulin effects on circulating ghrelin were analyzed within the framework of those networks. In the HC, ghrelin levels decreased in the absence (19.2% vs. baseline, P = 0.028) as well as in the presence of GIP (33.8%, P = 0.018). Ghrelin levels were significantly lower during HC with GIP than with placebo, despite insulin levels not differing significantly. In the GIP network combining data on GIP-infusion, EC+GIP and HC+GIP experiments, ghrelin was integrated into hormone-metabolite networks through a connection to a group of long-chain fatty acids. In contrast, ghrelin was excluded from the network of experiments without GIP. GIP decreased circulating ghrelin and might have affected the ghrelin system via modification of long-chain fatty acid pools. These observations were independent of insulin and offer potential mechanistic underpinnings for the involvement of GIP in systemic control of energy metabolism.  相似文献   

12.
Synthetic fragment peptides of glucose-dependent insulinotropic polypeptide (GIP) were evaluated for their ability to elevate cellular cAMP production and stimulate insulin secretion. In GIP receptor transfected CHL cells, GIP(4–42) and GIP(17–30) dose-dependently inhibited GIP-stimulated cAMP production (40±8%; p<0.01 and 15±6%; p<0.05, respectively), while GIP(1–16) exerted very weak agonist effects on cAMP production. In the clonal pancreatic -cell line, BRIN-BD11, GIP(1–16) demonstrated weak insulin releasing activity compared with native GIP. In contrast, GIP(4–42) and GIP (17–30) weakly antagonized the insulin releasing activity of the native peptide (23±6%; p<0.05 and 11±3%, respectively). These data demonstrate the critical role of the N-terminus and the involvement of regions of the C-terminal domain in generating full biological potency of GIP.  相似文献   

13.
A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7) M native GIP, with an IC(50) value of 2.6 microM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P < 0.05 to P < 0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P < 0.001) and lower the glycemic excursion (1.5-fold decrease; P < 0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes.  相似文献   

14.
The effects of PEGylation of glucose-dependent insulinotropic polypeptide (GIP) on potency and dipeptidyl peptidase IV (DPPIV) stability are reported. N-terminal modification of GIP(1-30) with 40 kDa polyethylene glycol (PEG) abrogates functional activity. In contrast, C-terminal PEGylation of GIP(1-30) maintains full agonism and reasonable potency at the GIP receptor and confers a high level of DPPIV resistance. Moreover, the dual modification of N-terminal palmitoylation and C-terminal PEGylation results in a full agonist of comparable potency to native GIP that is stable to DPPIV cleavage. The results provide the basis for the development of long acting, PEGylated GIP, GIP variants, or GIP-based hybrid peptide therapeutics.  相似文献   

15.
The physiology of the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and their role in type 2 diabetes currently attract great interest. Recently we reported an essential role for prohormone convertase (PC) 1/3 in the cleavage of intestinal proglucagon, resulting in formation of GLP-1, as demonstrated in PC1/3-deficient mice. However, little is known about the endoproteolytic processing of the GIP precursor. This study investigates the processing of proGIP in PC1/3 and PC2 null mice and in cell lines using adenovirus-mediated overexpression. Supporting a role for PC1/3 in proGIP processing, we found co-localization of GIP and PC1/3 but not PC2 in intestinal sections by immunohistochemistry, and analysis of intestinal extracts from PC1/3-deficient animals demonstrated severely impaired processing to GIP, whereas processing to GIP was unaltered in PC2-deficient mice. Accordingly, overexpression of preproGIP in the neuroendocrine AtT-20 cell line that expresses high levels of endogenous PC1/3 and negligible levels of PC2 resulted in production of GIP. Similar results were obtained after co-expression of preproGIP and PC1/3 in GH4 cells that express no PC2 and only low levels of PC1/3. In addition, studies in GH4 cells and the alpha-TC1.9 cell line, expressing PC2 but not PC1/3, indicate that PC2 can mediate processing to GIP but also to other fragments not found in intestinal extracts. Taken together, our data indicate that PC1/3 is essential and sufficient for the production of the intestinal incretin hormone GIP, whereas PC2, although capable of cleaving proGIP, does not participate in intestinal proGIP processing and is not found in intestinal GIP-expressing cells.  相似文献   

16.
Effects of insulin excess and deficiency on glucose-dependent insulinotropic polypeptide (GIP) was examined in rats following insulinoma transplantation or streptozotocin (STZ) administration. Over 14 days, food intake was increased (p < 0.001) in both groups of rats, with decreased body weight (p < 0.01) in STZ rats. Non-fasting plasma glucose levels were decreased (p < 0.01) and plasma insulin levels increased (p < 0.001) in insulinoma-bearing rats, whereas STZ treatment elevated glucose (p < 0.001) and decreased insulin (p < 0.01). Circulating GIP concentrations were elevated (p < 0.01) in both animal models. At 14 days, oral glucose resulted in a decreased glycaemic excursion (p < 0.05) with concomitant elevations in insulin release (p < 0.001) in insulinoma-bearing rats, whereas STZ-treated rats displayed similar glucose-lowering effects but reduced insulin levels (p < 0.01). GIP concentrations were augmented in STZ rats (p < 0.05) following oral glucose. Plasma glucose and insulin concentrations were not affected by oral fat, but fat-induced GIP secretion was particularly (p < 0.05) increased in insulinoma-bearing rats. Exogenous GIP enhanced (p < 0.05) glucose-lowering in all groups of rats accompanied by insulin releasing (p < 0.001) effects in insulinoma-bearing and control rats. Both rat models exhibited increased (p < 0.001) intestinal weight but decreased intestinal GIP concentrations. These data suggest that circulating insulin has direct and indirect effects on the synthesis and secretion of GIP.  相似文献   

17.
Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone that rises rapidly in response to nutrient ingestion. The GIP receptor is widely expressed in the brain including the brain stem, telencephalon, diencephalon, olfactory bulb, pituitary, and cerebellum. Until recently it was not clear what the endogenous ligand for this receptor was because no GIP expression had been demonstrated in the brain. GIP synthesis has now been documented in the dentate gyrus of the hippocampus. To define GIP effects on behavior we utilized a mouse model a GIP-overexpressing transgenic mouse (GIP Tg). Specifically, anxiety-related behavior, exploration, memory, and nociception were examined. Compared to age-matched adult male C57BI/6 controls GIP Tg mice displayed enhanced exploratory behavior in the open-field locomotor activity test. GIP Tg mice also demonstrated increased performance in some of the motor function tests. These data suggest that the GIP receptor plays a role in the regulation of locomotor activity and exploration. To our knowledge, this is the first report of effects of GIP on behavior.  相似文献   

18.
19.
20.
The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass, but it does not support a direct and independent role for the adipocyte or beta-cell GIPr in promoting adipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号