首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large number of enterotoxigenic strains was encountered in a group 56 Salmonella cultures belonging to 8 species viz., S. alachua, S. anatum, S. dublin, S. enteritidis, S. hindmarsh, S. newport, S. typhimurium, S. weltevreden, and 5 serotypes of S. arizona (16:z4:-; 48:1,v:z56; 53:z52:z53; 60:r:z; 61:i:z53). These cultures were isolated mainly from humans and animals suffering from gasteroenteritis. The enterotoxigenic (diarrhoeagenic) Salmonella cultures possess capacities for both skin permeation and epithelial penetration (invasiveness). Preliminary characterization revealed that Salmonella enterotoxin is a heatlabile protein of high molecular weight. It is suggested that enterotoxigenic and invasive propeties play a vital role in the pathogenesis of Salmonella diarrhoea.  相似文献   

2.
The O antigen of enterohemorrhagicEscherichia coli O157:H7 is identical with that ofSalmonella O301 and is also related toSalmonella O301302 in an a-a, b type of relationship.  相似文献   

3.
Polymerase chain reaction (PCR) primers for O9 antigen (rfbE) and phase 1 flagellin antigen (fliC) were designed for the rapid identification and detection of Salmonella serovar Enteritidis and Dublin. The rfbE primer pairs selectively amplified the rfbE region of group O9 Salmonella serovars. The fliC primer pairs amplified the DNAs of g,m and g,p-type flagellar antigen; Salmonella serovar Enteritidis, Dublin, and Essen. However, DNA from flagellar-negative Salmonella serovar Gallinarum-Pullorum was also amplified. The sensitivity of PCR primer pairs was 10 CFU/assay by boiled DNA preparation and 102 CFU/assay by proteinase K-treated DNA preparation.  相似文献   

4.
The Kauffmann-White scheme for serotyping Salmonella recognizes 46 somatic (O) antigen groups, which together with detection of the flagellar (H) antigens form the basis for serotype identification. Although serotyping has become an invaluable typing method for epidemiological investigations of Salmonella, it does have some practical limitations. We have been characterizing the genes required for O and H antigen biosynthesis with the goal of developing a DNA-based system for the determination of serotype in Salmonella. The majority of the enzymes involved in O antigen biosynthesis are encoded by the rfb gene cluster. We report the sequencing of the rfb region from S. enterica serotype Sundsvall (serogroup O:6,14). The S. enterica serotype Sundsvall rfb region is 8.4 kb in length and comprises six open reading frames. When compared with other previously characterized rfb regions, the serogroup O:6,14 sequence is most related to serogroup C1. On the basis of DNA sequence similarity, we identified two genes from the mannose biosynthetic pathway, two mannosyl transferase genes, the O unit flippase gene and, possibly, the O antigen polymerase. The whole cluster is derived from a low-G+C-content organism. Comparative sequencing of an additional serogroup O:6,14 isolate (S. enterica serotype Carrau) revealed a highly homologous sequence, suggesting that O antigen factors O:24 and O:25 (additional O factors associated with serogroup O:6,14) are encoded outside the rfb gene cluster. We developed a serogroup O:6,14-specific PCR assay based on a region of the putative wzx (O antigen flippase) gene. This provides the basis for a sensitive and specific test for the rapid identification of Salmonella serogroup O:6,14.  相似文献   

5.
Aims: To analyse genetic changes in the oafA gene explaining the loss of O5‐antigen expression in Salmonella Typhimurium and Salm. 4,[5],12:i:‐. Methods and Results: The oafA gene in 52 O5‐antigen‐negative and 77 O5‐antigen‐positive Salm. Typhimurium (N = 47) and Salm. 4,[5],12:i:‐ (monophasic Salm. Typhimurium strains, N = 82) was investigated by a combination of PCR screening and DNA sequencing to identify mutations leading to the suppression of the O5‐antigen. Various DNA sequence changes within the open reading frame (ORF) of oafA in O5‐antigen‐negative strains could be identified. In 77% of the O5‐antigen‐negative strains, a 7‐bp deletion of a duplicated sequence within the functional oafA gene led to a frameshift in the ORF. In four strains, an IS4 element and in two, an IS1 element was inserted at different positions. Four other strains carried at different positions single base pair substitutions causing a premature stop codon. Finally, in two strains, a deletion of the oafA 3′end of undetermined size was responsible for the lack of O5‐antigen expression. In none of the strains investigated, the complete ORF of oafA was deleted. Primers were designed and used to detect the most prominent variants. Conclusions: O5‐antigen‐negative Salm. Typhimurium and Salm. 4,[5],12:i:‐ strains carry an oafA pseudogene caused by different genetic events indicating that there is a selection for oafA mutations leading to the loss of O5‐antigen expression. Significance and Impact of the Study: The loss of O5‐antigen expression may be an example of a common evolutionary mechanism to escape host defence or to adapt to environmental changes. The data are the basis for the development of diagnostic PCR assays for the differentiation of O5‐antigen‐positive and O5‐antigen‐negative Salm. Typhimurium and its monophasic (Salm. 4,[5],12:i‐) strains.  相似文献   

6.
The O‐antigen of Salmonella lipopolysaccharide is a major antigenic determinant and its chemical composition forms the basis for Salmonella serotyping. Modifications of the O‐antigen that can affect the serotype include those carried out by the products of glycosyltransferase operons (gtr), which are present on specific Salmonella and phage genomes. Here we show that expression of the gtr genes encoded by phage P22 that confers the O1 serotype is under the control of phase variation. This phase variation occurs by a novel epigenetic mechanism requiring OxyR in conjunction with the DNA methyltransferase Dam. OxyR is an activator or a repressor of the system depending on which of its two binding sites in the gtr regulatory region is occupied. Binding is decreased by methylation at Dam target sequences in either site, and this confers heritability of the expression state to the system. Most Salmonella gtr operons share the key regulatory elements that are identified here as essential for this epigenetic phase variation.  相似文献   

7.
As natural killers of bacteria, bacteriophages have forced bacteria to develop a variety of defence mechanisms. The alteration of host receptors is one of the most common bacterial defence strategies against phage infection, which completely blocks phage attachment but comes at a potential fitness cost to the bacteria. Here, we report the cost‐free, transient emergence of phage resistance in Salmonella enterica subspecies enterica serovar Typhimurium through a phase‐variable modification of the O‐antigen. Phage SPC35 typically requires BtuB as a host receptor but also uses the Salmonella O12‐antigen as an adsorption‐assisting apparatus for the successful infection of S. Typhimurium. The α‐1,4‐glucosylation of galactose residues in the O12‐antigen by phase variably expressed O‐antigen glucosylating genes, designated the LT 2 gtrABC1 cluster, blocks the adsorption‐assisting function of the O12‐antigen. Consequently, it confers transient SPC35 resistance to Salmonella without any mutations to the btuB gene. This temporal switch‐off of phage adsorption through phase‐variable antigenic modification may be widespread among Gram‐negative bacteria‐phage systems.  相似文献   

8.
A plasmid that included both an 8.9 kb chromosomal DNA insert containing genes from the rfb cluster of Shigella dysenteriae 1 and a smaller insert containing the rfp gene from a S. dysenteriae 1 multicopy plasmid resulted in efficient expression of O antigen in an rfb-deleted strain of Escherichia coli K-12. Eight genes were identified in the rfb fragment: the rfbB-CAD cluster which encodes dTDP-rhamnose synthesis, rfbX which encodes a hydrophobic protein involved in assembly of the O antigen, rfc which encodes the O antigen polymerase, and two sugar transferase genes. The production of an O antigen also required the E. coli K-12 rfe gene, which is known to encode a transferase which adds N-acetyl-glucosamine phosphate to the carrier lipid unde-caprenol phosphate. Thus Rfe protein appears to function as an analogue of the Salmonella RfbP protein to provide the first sugar of the O unit. Functional analysis of the other genes was facilitated by the fact that partial O units of one, two or three sugars were efficiently transferred to the lipopolysaccharide core. This analysis indicated that the plasmid-encoded Rfp protein is the transferase that adds the second sugar of the O unit while the two rfb transferases add the distal sugars to make an O antigen whose structure is (Rha–Rha–Gal–GlcNAc)n. The use of the rfe gene product as the transferase that adds the first sugar of an O unit is a novel mechanism which may be used for the synthesis of other enteric O antigens.  相似文献   

9.
The O-polysaccharide of Salmonella Telaviv was obtained by mild acid degradation of the lipopolysaccharide and studied by chemical methods (sugar and methylation analyses, Smith degradation, de-O-acetylation) and NMR spectroscopy. The structure of the O-polysaccharide was established. The repeating units that are proximal to the lipopolysaccharide core region mostly have a digalactose side chain and lack glucose, whereas those at the other end of the chain mostly do bear glucose but are devoid of the disaccharide side chain. This is the first structure established for the O-polysaccharide of a Salmonella serogroup O:28 (formerly M) strain characterized by subfactors O281 and O282. Knowledge of this structure and the structure of the O-polysaccharide of Salmonella Dakar (O281, O283) established earlier is crucial for determination of the exact structures associated with subfactors O281, O282, and O283 and elucidation of the genetic basis of the close relationship between Escherichia coli O71 and S. enterica O:28 O-antigens.  相似文献   

10.
Chemical modifications of components of the bacterial cell envelope can enhance resistance to antimicrobial agents. Why then are such modifications produced only under specific conditions? Here, we address this question by examining the role of regulated variations in O‐antigen length in the lipopolysaccharide (LPS), a glycolipid that forms most of the outer leaflet of the outer membrane in Gram‐negative bacteria. We determined that activation of the PmrA/PmrB two‐component system, which is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth of Salmonella in bile. This growth defect required the PmrA‐activated gene wzzst, which encodes the protein that determines long O‐antigen chain length and confers resistance to complement‐mediated killing. By contrast, this growth defect did not require the wzzfepE gene, which controls production of very long O‐antigen, or other PmrA‐activated genes that mediate modifications of lipid A or core regions of the LPS. Additionally, we establish that long O‐antigen inhibits growth in bile only in the presence of enterobacterial common antigen, an outer‐membrane glycolipid that contributes to bile resistance. Our results suggest that Salmonella regulates the proportion of long O‐antigen in its LPS to respond to the different conditions it faces during infection.  相似文献   

11.

Background  

The fliC and fljB genes in Salmonella code for the phase 1 (H1) and phase 2 (H2) flagellin respectively, the rfb cluster encodes the majority of enzymes for polysaccharide (O) antigen biosynthesis, together they determine the antigenic profile by which Salmonella are identified. Sequencing and characterisation of fliC was performed in the development of a molecular serotyping technique.  相似文献   

12.
The effects of the β-agonist ractopamine, approved for use in finishing swine and cattle to improve carcass quality and performance, were examined on two important foodborne pathogens, Escherichia coli O157:H7 and Salmonella. Ractopamine, administered to sheep before and after oral inoculation with E. coli O157:H7, increased (P < 0.01) fecal shedding and tended to increase (P = 0.08) cecal populations of the challenge strain. Pigs receiving ractopamine in the diet and then experimentally infected with Salmonella Typhimurium, had decreased (P < 0.05) fecal shedding and fewer (P = 0.05) liver samples positive for the challenge strain of Salmonella. Pure cultures of E. coli O157:H7 (used in the present sheep study), E. coli O157:H19 (isolated from pigs with postweaning diarrhea), Salmonella Typhimurium (used in the present pig study), and Salmonella Choleraesuis were incubated with varying concentrations of ractopamine to determine if ractopamine has a direct effect on bacterial growth. No differences in growth rate were observed for either strain of E. coli or for Salmonella Typhimurium when incubated with increasing concentrations of ractopamine. The growth rate for Salmonella Choleraesuis was increased with the addition of 2.0 μg ractopamine/ml compared with the other concentrations examined. Collectively, these results indicate that ractopamine may influence gut populations and fecal shedding of E. coli O157:H7 and Salmonella. Because ractopamine is currently approved to be fed to finishing cattle and swine immediately before slaughter, any potential for decreasing foodborne pathogens has exciting food safety implications. Mention of trade names, proprietary products, or specific equipment does not constitute a guarantee or warranty by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

13.
Viable antigen (Ag) delivery systems expressing defined pathogen-derived proteins represent powerful candidates for future vaccination strategies. Here, recombinant (r)Salmonella typhimurium aroA strains secreting listeriolysin (Hly) of Listeria monocytogenes in haemolytic or non-haemolytic form were constructed to direct these carriers into cytosolic or phagosomal host cell compartments, respectively. Oral and intravenous (i.v.) vaccination of mice with either construct induced ‘transporter associated with antigen processing’-dependent protection against the intracellular bacterial pathogen L. monocytogenes. Comparison of oral immunization with both rSalmonella constructs revealed superior vaccine efficacy of the haemolytic rS. typhimurium Hlys construct as compared to the non-haemolytic rSalmonella Hlys492 strain. In contrast, efficacy of i.v. vaccination with either rSalmonella strain did not significantly differ. Therefore, rSalmonella strains secreting biologically active Hly represent valuable delivery systems for heterologous rAg or DNA which should be exploited for future mucosal vaccination strategies.  相似文献   

14.
Vi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.  相似文献   

15.
Bacteria of the Salmonella O48 somatic antigen group are clinically important strains causing intestinal dysfunction and diarrhoea, especially in children. The susceptibility of Salmonella O48 strains containing sialic acid (N-acetylneuraminic acid (NeuAc)) in lipopolysaccharide (LPS) to the bactericidal action of normal cord serum (NCS) was determined. The authors' previous results published in Microbial Ecology in 2010 indicated that neither the presence of NeuAc in LPS nor the length of the O-specific part of LPS containing NeuAc plays a decisive role in determining bacterial resistance to the bactericidal activity of normal human serum (NHS), and that the presence of NeuAc in the LPS structure is not sufficient to block the activation of the alternative pathway of complement in NHS. The current results showed that the tested strains showed various sensitivities also to the bactericidal action of NCS. The authors postulate that the presence of certain outer membrane proteins (OMPs) are characteristic of the resistant and sensitive phenotypes of Salmonella O48 strains. To establish a possible relationship between resistance to NCS and OMPs band patterns, ten Salmonella O48 strains were studied as follows: susceptibility to the bactericidal effect of NCS, the mechanisms of NCS activation and OMP band patterns obtained by sodium dodecyl sulphate-polyacrylamide gel electrophoresis.  相似文献   

16.
A 7.5 kb Kpnl-generated fragment, from within the rfb cluster of Salmonella typhimurium LT2 that encodes abequose synthase (the rfbJ gene) which is necessary for O4 antigen synthesis, and flanking sequences, was inserted into a suicide vector. Using allelic exchange techniques, these rfb sequences of S. typhimurium were integrated into the rfb clusters of wild-type Salmonella typhi Vi-positive strain ISP 1820 (i.e. serotype 09,12; Vi+ H-d), S. typhi Vi-negative strain H400 (i.e. serotype 09,12; Vi; H-d), and a double aro mutant of S. typhi ISP 1820, strain CVD 906, resulting in the isolation of strains H325, H404 and CVD 906-O4, respectively. Immunoblot analysis of lipopolysaccharide (LPS) purified from H325, H404 and CVD 906-O4 demonstrated that these 8trains express the 04 antigen (an abequose residue) in place of the O9 antigen (a tyvelose residue) in the LPS molecule. Hence, the serotype of H325 is O4,12; Vi+; H-d and the serotype of H404 is O4,12; Vi; H-d. DNA hybridization analysis of chromosomal DNA from H325, H404 and CVD 906-O4 confirmed that a precise recombination event within sequences flanking rfbSE of S. typhi (which encodes the enzymes necessary for cytidine diphosphate-tyvelose synthesis) resulted in replacement of rfbSE with rfbJ (which encodes abequose synthase and is necessary for O4 synthesis) of S. typhimurium in strains H325, H404 and CVD 906-O4. The resistance of each strain to the bactericidal effects of guinea-pig serum (GPC) was assessed. Whereas ISP 1820, H325 and H404 exhibit similar resistance patterns in GPC, strain H400 is sensitive to the bactericidal effects of GPC. The results suggest that the development of the O-antigen serotype diversity of Salmonella is probably the result of both sequence divergence and recombination  相似文献   

17.
The effect of hydrofluoric acid (aqueous 48% HF) upon different lipopolysaccharides (LPS) was studied, employing conditions (48 h at + 4°C) that are commonly used to dephosphorylate LPS. From the LPS of Salmonella typhimurium having the O antigen 4,5,12 almost all of the O-antigenic sugars (Abe, Gal, Glc, Man, Rha) were liberated in dialysable form, whereas the saccharide chains of Salmonella LPS with O antigen 6,7 (Man, Glc, GlcNAc) were resistant to HF. The lability towards HF was shown to be due to the presence of the deoxysugar L-rhamnose in the saccharide backbone of the O antigen 4,5,12, since only Rha was found as the terminal sugar in the corresponding dialysable material. Hydrofluoric acid can thus be used to specifically cleave Rha-containing polysaccharides.  相似文献   

18.
The host range of the six S. weltevreden typing phages was studied on 1469 strains belonging to 37 different Salmonella serotypes. In addition to S. weltevreden, only S. nchanga, S. give, S. lexington and S. anatum, all belonging to O group E1, showed varying degrees of susceptibility to the action of some of the typing phages.Typing phage VI lysed only one strain other than S. weltevreden. All serotypes tested other than S. weltevreden were resistant to phages III and IV even at 1000 times the routine test dilution. Thus, typing phages III and IV were specific for S. weltevreden. The sensitivity patterns of S. weltevreden typing phages were not found to bear much correlation with either somatic of flagellar antigens of Salmonellae.  相似文献   

19.
Summary Two newSalmonella types,S. bilthoven, 47ac: a:—andS. wassenaar, 50; gp—were isolated from reptiles in the Netherlands. A newSalmonella type,S. bonaire 50; z4z32:— was isolated from a cow on the Island Bonaire.  相似文献   

20.
We report sequencing of the O antigen encoded by the rfb gene cluster of Salmonella enterica serotype Jangwani (O17) and Salmonella serotype Cerro (O18). We developed serogroup O17- and O18-specific PCR assays based on rfb gene targets and found them to be sensitive and specific for rapid identification of Salmonella serogroups O17 and O18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号