首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
RNase E is an essential Escherichia coli endonuclease, which controls both 5S rRNA maturation and bulk mRNA decay. While the C-terminal half of this 1061-residue protein associates with polynucleotide phosphorylase (PNPase) and several other enzymes into a 'degradosome', only the N-terminal half, which carries the catalytic activity, is required for growth. We characterize here a mutation (rne131 ) that yields a metabolically stable polypeptide lacking the last 477 residues of RNAse E. This mutation resembles the N-terminal conditional mutation rne1 in stabilizing mRNAs, both in bulk and individually, but differs from it in leaving rRNA processing and cell growth unaffected. Another mutation (rne105 ) removing the last 469 residues behaves similarly. Thus, the C-terminal half of RNase E is instrumental in degrading mRNAs, but dispensable for processing rRNA. A plausible interpretation is that the former activity requires that RNase E associates with other degradosome proteins; however, PNPase is not essential, as RNase E remains fully active towards mRNAs in rne+pnp mutants. All mRNAs are not stabilized equally by the rne131 mutation: the greater their susceptibility to RNase E, the larger the stabilization. Artificial mRNAs generated by E. coli expression systems based on T7 RNA polymerase can be genuinely unstable, and we show that the mutation can improve the yield of such systems without compromising cell growth.  相似文献   

3.
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was approximately 2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates approximately 2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.  相似文献   

4.
RNase E is an essential endoribonuclease involved in RNA processing and mRNA degradation. The N-terminal half of the protein encompasses the catalytic domain; the C-terminal half is the scaffold for the assembly of the multienzyme RNA degradosome. Here we identify and characterize 'segment-A', an element in the beginning of the non-catalytic region of RNase E that is required for membrane binding. We demonstrate in vitro that an oligopeptide corresponding to segment-A has the propensity to form an amphipathic alpha-helix and that it avidly binds to protein-free phospholipid vesicles. We demonstrate in vitro and in vivo that disruption of segment-A in full-length RNase E abolishes membrane binding. Taken together, our results show that segment-A is necessary and sufficient for RNase E binding to membranes. Strains in which segment-A has been disrupted grow slowly. Since in vitro experiments show that phospholipid binding does not affect the ribonuclease activity of RNase E, the slow-growth phenotype might arise from a defect involving processes such as accessibility to substrates or interactions with other membrane-bound machinery. This is the first report demonstrating that RNase E is a membrane-binding protein and that its localization to the inner cytoplasmic membrane is important for normal cell growth.  相似文献   

5.
6.
7.
Escherichia coli RNase P derivatives were evolved in vitro for DNA cleavage activity. Ribonucleoproteins sampled after ten generations of selection show a >400-fold increase in the first-order rate constant (k(cat)) on a DNA substrate, reflecting a significant improvement in the chemical cleavage step. This increase is offset by a reduction in substrate binding, as measured by K(M). We trace the catalytic enhancement to two ubiquitous A-->U sequence changes at positions 136 and 333 in the M1 RNA component, positions that are phylogenetically conserved in the Eubacteria. Furthermore, although the mutations are located in different folding domains of the catalytic RNA, the first in the substrate binding domain, the second near the catalytic core, their effect on catalytic activity is significantly influenced by the presence of the C5 protein. The activity of the evolved ribonucleoproteins on both pre-4.5 S RNA and on an RNA oligo substrate remain at wild-type levels. In contrast, improved DNA cleavage activity is accompanied by a 500-fold decrease in pre-tRNA cleavage efficiency (k(cat)/K(M)). The presence of the C5 component does not buffer this tradeoff in catalytic activities, despite the in vivo role played by the C5 protein in enhancing the substrate versatility of RNase P. The change at position 136, located in the J11/12 single-stranded region, likely alters the geometry of the pre-tRNA-binding cleft and may provide a functional explanation for the observed tradeoff. These results thus shed light both on structure/function relations in E. coli RNase P and on the crucial role of proteins in enhancing the catalytic repertoire of RNA.  相似文献   

8.
We have isolated suppressor mutants that suppress temperature-sensitive colony formation and anucleate cell production of a mukB mutation. A linkage group (smbB) of the suppressor mutations is located in the rne/ams/hmp gene encoding the processing endoribonuclease RNase E. All of the rne (smbB) mutants code for truncated RNase E polypeptides lacking a carboxyl-terminal half. The amount of MukB protein was higher in these rne mutants than that in the rne+ strain. These rne mutants grew nearly normally in the mukB+ genetic background. The copy number of plasmid pBR322 in these rne mutants was lower than that in the rne+ isogenic strain. The results suggest that these rne mutations increase the half-lives of mukB mRNA and RNAI of pBR322, the antisense RNA regulating ColE1-type plasmid replication. We have demonstrated that the wild-type RNase E protein bound to polynucleotide phosphorylase (PNPase) but a truncated RNase E polypeptide lacking the C-terminal half did not. We conclude that the C-terminal half of RNase E is not essential for viability but plays an important role for binding with PNPase. RNase E and PNPase of the multiprotein complex presumably cooperate for effective processing and turnover of specific substrates, such as mRNAs and other RNAs in vivo.  相似文献   

9.
A precursor to 10Sa RNA accumulates in an rne mutant. However, the present studies indicate that RNase III is the enzyme that processes this RNA. Cell extracts prepared from an rne mutant failed to cleave p10Sa RNA, whereas E coli wild type, rne and rnp cell extracts processed p10Sa RNA under specific assay conditions that require the presence of Mn2+ but not under the customary conditions used for assaying RNase III. That the p10Sa cleaving activity is solely RNase III was confirmed by comparing the increase in p10Sa and poly(A).poly(U) cleaving activities in a strain harboring a plasmid carrying an RNase III gene as compared to a normal E coli strain. It is of interest that these 2 substrates are cleaved by RNase III efficiently, but under 2 different assay conditions. In all strains tested, with normal or elevated levels of RNase III, RNase III fractionates predominantly with the membrane. Further characterization of the maturation of 10Sa RNA revealed that the processing of 10Sa RNA is a 2 step reaction involving 2 separate activities, both sensitive to heat and proteinase K treatment. The first step is catalyzed by RNase III, and results in the formation of a molecule, p10Sa', which is larger than the mature 10Sa RNA. The second activity catalyzes the conversion of p10S' to 10Sa RNA, and this step does not require a divalent cation. The second activity is not any of the known processing endoribonucleases, RNase III, E or P, but could be a new enzyme having no obligate requirement for a divalent cation.  相似文献   

10.
Shin E  Go H  Yeom JH  Won M  Bae J  Han SH  Han K  Lee Y  Ha NC  Moore CJ  Sohlberg B  Cohen SN  Lee K 《Genetics》2008,179(4):1871-1879
RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell. To better understand the molecular mechanisms of RNase E action, we performed a genetic screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that knock down the ability of RNase E to support survival of E. coli. Comparative phylogenetic analysis of RNase E homologs shows that wild-type residues at these mutated positions are nearly invariably conserved. Cells conditionally expressing these N-Rne mutants in the absence of wild-type RNase E show a decrease in copy number of plasmids regulated by the RNase E substrate RNA I, and accumulation of 5S ribosomal RNA, M1 RNA, and tRNA(Asn) precursors, as has been found in Rne-depleted cells, suggesting that the inability of these mutants to support cellular growth results from loss of ribonucleolytic activity. Purified mutant proteins containing an amino acid substitution in the DNase I subdomain, which is spatially distant from the catalytic site posited from crystallographic studies, showed defective binding to an RNase E substrate, p23 RNA, but still retained RNA cleavage activity-implicating a previously unidentified structural motif in the DNase I subdomain in the binding of RNase E to targeted RNA molecules, demonstrating the role of the DNase I domain in RNase E activity.  相似文献   

11.
RNase II is a single-stranded-specific 3'-exoribonuclease that degrades RNA generating 5'-mononucleotides. This enzyme is the prototype of an ubiquitous family of enzymes that are crucial in RNA metabolism and share a similar domain organization. By sequence prediction, three different domains have been assigned to the Escherichia coli RNase II: two RNA-binding domains at each end of the protein (CSD and S1), and a central RNB catalytic domain. In this work we have performed a functional characterization of these domains in order to address their role in the activity of RNase II. We have constructed a large set of RNase II truncated proteins and compared them to the wild-type regarding their exoribonucleolytic activity and RNA-binding ability. The dissociation constants were determined using different single- or double-stranded substrates. The results obtained revealed that S1 is the most important domain in the establishment of stable RNA-protein complexes, and its elimination results in a drastic reduction on RNA-binding ability. In addition, we also demonstrate that the N-terminal CSD plays a very specific role in RNase II, preventing a tight binding of the enzyme to single-stranded poly(A) chains. Moreover, the biochemical results obtained with RNB mutant that lacks both putative RNA-binding domains, revealed the presence of an additional region involved in RNA binding. Such region, was identified by sequence analysis and secondary structure prediction as a third putative RNA-binding domain located at the N-terminal part of RNB catalytic domain.  相似文献   

12.
13.
RNase G (rng) is an E. coli endoribonuclease that is homologous to the catalytic domain of RNase E (rne), an essential protein that is a major participant in tRNA maturation, mRNA decay, rRNA processing and M1 RNA processing. We demonstrate here that whereas RNase G inefficiently participates in the degradation of mRNAs and the processing of 9S rRNA, it is not involved in either tRNA or M1 RNA processing. This conclusion is supported by the fact that inactivation of RNase G alone does not affect 9S rRNA processing and only leads to minor changes in mRNA half-lives. However, in rng rne double mutants mRNA decay and 9S rRNA processing are more defective than in either single mutant. Conversely, increasing RNase G levels in an rne-1 rng::cat double mutant, proportionally increased the extent of 9S rRNA processing and decreased the half-lives of specific mRNAs. In contrast, variations in the amount of RNase G did not alter tRNA processing under any circumstances. Thus, the failure of RNase G to complement rne mutations, even when overproduced at high levels, apparently results from its inability to substitute for RNase E in the maturation of tRNAs.  相似文献   

14.
The Escherichia coli endonuclease RNase E plays a key role in rRNA maturation and mRNA decay. In particular, it controls the decay of its own mRNA by cleaving it within the 5'-untranslated region (UTR), thereby autoregulating its synthesis. Here, we report that, when the synthesis of an RNase E substrate is artificially induced to high levels in vivo, both the rne mRNA concentration and RNase E synthesis increase abruptly and then decrease to a steady-state level that remains higher than in the absence of induction. Using rne-lacZ fusions that retain or lack the rne 5'UTR, we show that these variations reflect a transient mRNA stabilization mediated by the rne 5'UTR. Finally, by putting RNase E synthesis under the control of an IPTG-controlled promoter, we show that a similar, rne 5'UTR-mediated mRNA stabilization can result from a shortage of RNase E. We conclude that the burst in substrate synthesis has titrated RNase E, stabilizing the rne mRNA by protecting its 5'UTR. However, this stabilization is self-correcting, because it allows the RNase E pool to expand until its mRNA is destabilized again. Thus, autoregulation allows RNase E to adjust its synthesis to that of its substrates, a behaviour that may be common among autoregulated proteins. Incidentally, this adjustment cannot occur when translation is blocked, and we argue that the global mRNA stabilization observed under these conditions originates in part from this defect.  相似文献   

15.
Viable mutations affecting the 5'-phosphate sensor of RNase E, including R169Q or T170A, become lethal when combined with deletions removing part of the non-catalytic C-terminal domain of RNase E. The phosphate sensor is required for efficient autoregulation of RNase E synthesis as RNase E R169Q is strongly overexpressed with accumulation of proteolytic fragments. In addition, mutation of the phosphate sensor stabilizes the rpsT P1 mRNA as much as sixfold and slows the maturation of 16S rRNA. In contrast, the decay of other model mRNAs and the processing of several tRNA precursors are unaffected by mutations in the phosphate sensor. Our data point to the existence of overlapping mechanisms of substrate recognition by RNase E, which lead to a hierarchy of efficiencies with which its RNA targets are attacked.  相似文献   

16.
Escherichia coli cells normally require RNase E activity to form colonies (colony-forming ability [CFA]). The CFA-defective phenotype of cells lacking RNase E is partly reversed by overexpression of the related endoribonuclease RNase G or by mutation of the gene encoding the RNA helicase DeaD. We found that the carbon source utilization by rne deaD doubly mutant bacteria differs from that of rne+ cells and from that of cells mutated in deaD alone and that the loss of rne function in these bacteria limits conversion of the glycolytic pathway product phosphoenolpyruvate to the tricarboxylic acid (TCA) cycle intermediate oxaloacetic acid. We show that the mechanism underlying this effect is reduced production of the enzyme phosphoenolpyruvate carboxylase (PPC) and that adventitious overexpression of PPC, which facilitates phosphoenolpyruvate utilization and connects the glycolytic pathway with the TCA cycle, restored CFA to rne deaD mutant bacteria cultured on carbon sources that otherwise were unable to sustain growth. We further show that bacteria producing full-length RNase E, which allows formation of degradosomes, have nutritional requirements different from those of cells supplied with only the N-terminal catalytic region of RNase E and that mitigation of RNase E deficiency by overexpression of a related RNase, RNase G, is also affected by carbon source. Our results reveal previously unsuspected effects of RNase E deficiency and degradosome formation on nutrient utilization by E. coli cells.  相似文献   

17.
Escherichia coli cells normally require RNase E activity to propagate and form colonies. Using random Tn10 insertion mutagenesis, we screened for second-site suppressor mutations that restore colony-forming ability (CFA) to E. coli cells lacking RNase E function and found mutations in three separate chromosomal loci that had this phenotype. Restoration of CFA by mutations in two of the genes identified was observed only in nutrient-poor medium, whereas the effects of mutation of the ATP-dependent RNA helicase DeaD were medium independent. Suppression of the rne mutant phenotype by inactivation of deaD was partial, as rne deaD doubly mutant bacteria had a greatly prolonged generation time and grew as filamentous chains in liquid medium. Moreover, we found that CFA restoration by deaD inactivation requires normal expression of the endogenous rng gene in doubly mutant rne deaD cells. Second-site suppression by deaD mutation was attributable specifically to ablation of the helicase activity of DeaD and was reversed by adventitious expression of RhlE or RNase R, both of which can unwind double-stranded RNA. Our results suggest a previously unsuspected role for RNA secondary structure as a determinant of RNase E essentiality.  相似文献   

18.
Parker JS  Roe SM  Barford D 《The EMBO journal》2004,23(24):4727-4737
RNA silencing regulates gene expression through mRNA degradation, translation repression and chromatin remodelling. The fundamental engines of RNA silencing are RISC and RITS complexes, whose common components are 21-25 nt RNA and an Argonaute protein containing a PIWI domain of unknown function. The crystal structure of an archaeal Piwi protein (AfPiwi) is organised into two domains, one resembling the sugar-binding portion of the lac repressor and another with similarity to RNase H. Invariant residues and a coordinated metal ion lie in a pocket that surrounds the conserved C-terminus of the protein, defining a key functional region in the PIWI domain. Furthermore, two Asp residues, conserved in the majority of Argonaute sequences, align spatially with the catalytic Asp residues of RNase H-like catalytic sites, suggesting that in eukaryotic Argonaute proteins the RNase H-like domain may possess nuclease activity. The conserved region around the C-terminus of the PIWI domain, which is required for small interfering RNA (siRNA) binding to AfPiwi, may function as the receptor site for the obligatory 5' phosphate of siRNAs, thereby specifying the cleavage position of the target mRNA.  相似文献   

19.
Sequencing and expression of the rne gene of Escherichia coli.   总被引:5,自引:1,他引:4       下载免费PDF全文
RNase E is a major endonucleolytic RNA processing enzyme in Escherichia coli. We have sequenced a 3.2 kb EcoRI-BamHI fragment encoding the rne gene, and identified its reading frame. Upstream from the gene, there are appropriate consensus sequences for a putative promoter and a ribosome binding site. We have translated this gene using a T7 RNA polymerase/promoter system. We determined 25 amino acids from the N-terminal of the translated product and they are in full agreement with the DNA sequence. The translated product of the rne gene migrates in SDS containing polyacrylamide gels as a 110,000 Da polypeptide, but the open reading frame found in the sequenced DNA indicates a much smaller protein. The entity that migrates as a 110,000 Da contains RNA, which could account, at least partially, for the migration of the rne gene product in SDS containing polyacrylamide gels.  相似文献   

20.
RNase II and RNase R are the two E. coli exoribonucleases that belong to the RNase II super family of enzymes. They degrade RNA hydrolytically in the 3' to 5' direction in a processive and sequence independent manner. However, while RNase R is capable of degrading structured RNAs, the RNase II activity is impaired by dsRNAs. The final end-product of these two enzymes is also different, being 4 nt for RNase II and 2 nt for RNase R. RNase II and RNase R share structural properties, including 60% of amino acid sequence similarity and have a similar modular domain organization: two N-terminal cold shock domains (CSD1 and CSD2), one central RNB catalytic domain, and one C-terminal S1 domain. We have constructed hybrid proteins by swapping the domains between RNase II and RNase R to determine which are the responsible for the differences observed between RNase R and RNase II. The results obtained show that the S1 and RNB domains from RNase R in an RNase II context allow the degradation of double-stranded substrates and the appearance of the 2 nt long end-product. Moreover, the degradation of structured RNAs becomes tail-independent when the RNB domain from RNase R is no longer associated with the RNA binding domains (CSD and S1) of the genuine protein. Finally, we show that the RNase R C-terminal Lysine-rich region is involved in the degradation of double-stranded substrates in an RNase II context, probably by unwinding the substrate before it enters into the catalytic cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号