首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sarcolemmal Na(+)-Ca2+ exchanger is regulated by intracellular Ca2+ at a high affinity Ca2+ binding site separate from the Ca2+ transport site. Previous data have suggested that the Ca2+ regulatory site is located on the large intracellular loop of the Na(+)-Ca2+ exchange protein, and we have identified a high-affinity 45Ca2+ binding domain on this loop (Levitsky, D. O., D. A. Nicoll, and K. D. Philipson. 1994. Journal of Biological Chemistry. 269:22847-22852). We now use electrophysiological and mutational analyses to further define the Ca2+ regulatory site. Wild-type and mutant exchangers were expressed in Xenopus oocytes, and the exchange current was measured using the inside- out giant membrane patch technique. Ca2+ regulation was measured as the stimulation of reverse Na(+)-Ca2+ exchange (intracellular Na+ exchanging for extracellular Ca2+) by intracellular Ca2+. Single-site mutations within two acidic clusters of the Ca2+ binding domain lowered the apparent Ca2+ affinity at the regulatory site from 0.4 to 1.1-1.8 microM. Mutations had parallel effects on the affinity of the exchanger loop for 45Ca2+ binding (Levitsky et al., 1994) and for functional Ca2+ regulation. We conclude that we have identified the functionally important Ca2+ binding domain. All mutant exchangers with decreased apparent affinities at the regulatory Ca2+ binding site also have a complex pattern of altered kinetic properties. The outward current of the wild-type Na(+)-Ca2+ exchanger declines with a half time (th) of 10.8 +/- 3.2 s upon Ca2+ removal, whereas the exchange currents of several mutants decline with th values of 0.7-4.3 s. Likewise, Ca2+ regulation mutants respond more rapidly to Ca2+ application. Study of Ca2+ regulation has previously been possible only with the exchanger operating in the reverse mode as the regulatory Ca2+ and the transported Ca2+ are then on opposite sides of the membrane. The use of exchange mutants with low affinity for Ca2+ at regulatory sites also allows demonstration of secondary Ca2+ regulation with the exchanger in the forward or Ca2+ efflux mode. In addition, we find that the affinity of wild-type and mutant Na(+)-Ca2+ exchangers for intracellular Na+ decreases at low regulatory Ca2+. This suggests that Ca2+ regulation modifies transport properties and does not only control the fraction of exchangers in an active state.  相似文献   

2.
Ca(2+) influx through the L-type Ca(2+) channels is the primary pathway for triggering the Ca(2+) release from the sarcoplasmic reticulum (SR). However, several observations have shown that Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger current (I(Na-Ca)) could also trigger the Ca(2+) release. The aim of the present study was to quantitate the role of this alternative pathway of Ca(2+) influx using a mathematical model. In our model 20% of the fast sodium channels and the Na(+)-Ca(2+) exchanger molecules are located in the restricted subspace between the sarcolemma and the SR where triggering of the calcium-induced calcium release (CICR) takes place. After determining the strengths of the alternative triggers with simulated voltage-clamps in varied membrane voltages and resting [Na](i) values, we studied the CICR in simulated action potentials, where fast sodium channel current contributes [Na](i) of the subspace. In low initial [Na](i) the Ca(2+) influx via the L-type Ca(2+) channels is the major trigger for Ca(2+) release from the SR, and the Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger cannot trigger the CICR. However, depending on the initial [Na](i), the contribution of the Ca(2+) entry via the exchanger may account for 25% (at [Na](i) = 10 mM) to nearly 100% ([Na](i) = 30 mM) of the trigger Ca(2+). The shift of the main trigger from L-type calcium channels to the exchanger reduced the delay between the action potential upstroke and the intracellular calcium transient. This may contribute to the function of the myocyte in physiological situations where [Na](i) is elevated. These main results remain the same when using different estimates for the most crucial parameters in the modeling or different models for the exchanger.  相似文献   

3.
Increases in intracellular free Ca(2+)+ concentration (Ca(2+)+ oscillations) occur during meiotic maturation and fertilization of mammalian oocytes but little is known about the mechanisms of Ca(2+) homeostasis in these cells. Cells extrude Ca(2+) from the cytosol using two main transport processes, the Ca(2+)-ATPase and the Na(+)-Ca(2+) exchanger. The aim of this study was to determine whether Na(+)-Ca(2+) exchange activity is present in immature and mature mouse oocytes. Na(+)-Ca(2+) exchange can be revealed by altering the Na(+) concentration gradient across the plasma membrane and recording intracellular free Ca(2+) concentrations using Ca(2+)-sensitive fluorescent dyes. Depletion of extracellular Na(+) caused an immediate increase in Ca(2+) concentration in immature oocytes and a delayed increase in mature oocytes. The Na(+) ionophore, monensin, caused an increase in intracellular Ca(2+) in immature oocytes similar to that induced by Na(+)-depleted medium. In mature oocytes, monensin had no effect on intracellular Ca(2+) but the time taken for Ca(2+) to reach a peak value on removal of extracellular Na(+) was significantly decreased. Finally, addition of Ca(2+) to immature oocytes incubated in Ca(2+)-free medium caused an increase in the concentration of intracellular Ca(2+) that was dependent upon the presence of extracellular Na(+). This effect was not seen in mature oocytes. The data show that Na(+)-Ca(2+) exchange occurs in immature and mature mouse oocytes and that Ca(2+) homeostasis in immature oocytes is more sensitive to manipulations that activate Na(+)-Ca(2+) exchange.  相似文献   

4.
Mitochondria buffer large changes in [Ca(2+)](i)following an excitotoxic glutamate stimulus. Mitochondrial sequestration of [Ca(2+)](i)can beneficially stimulate oxidative metabolism and ATP production. However, Ca(2+)overload may have deleterious effects on mitochondrial function and cell survival, particularly Ca(2+)-dependent production of reactive oxygen species (ROS) by the mitochondria. We recently demonstrated that the mitochondrial Na(+)-Ca(2+)exchanger in neurons is selectively inhibited by CGP-37157, a benzothiazepine analogue of diltiazem. In the present series of experiments we investigated the effects of CGP-37157 on mitochondrial functions regulated by Ca(2+). Our data showed that 25 microM CGP-37157 quenches DCF fluorescence similar to 100 microM glutamate and this effect was enhanced when the two stimuli were applied together. CGP-37157 did not increase ROS generation and did not alter glutamate or 3mM hydrogen-peroxide-induced increases in ROS as measured by DHE fluorescence. CGP-37157 induces a slight decrease in intracellular pH, much less than that of glutamate. In addition, CGP-37157 does not enhance intracellular acidification induced by glutamate. Although it is possible that CGP-37157 can enhance mitochondrial respiration both by blocking Ca(2+)cycling and by elevating intramitochondrial Ca(2+), we did not observe any changes in ATP levels or toxicity either in the presence or absence of glutamate. Finally, mitochondrial Ca(2+)uptake during an excitotoxic glutamate stimulus was only slightly enhanced by inhibition of mitochondrial Ca(2+)efflux. Thus, although CGP-37157 alters mitochondrial Ca(2+)efflux in neurons, the inhibition of Na(+)-Ca(2+)exchange does not profoundly alter glutamate-mediated changes in mitochondrial function or mitochondrial Ca(2+)content.  相似文献   

5.
6.
A mouse model carrying a null mutation in one copy of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase isoform 2 (SERCA2) gene, in which SERCA2 protein levels are reduced by approximately 35%, was used to investigate the effects of decreased SERCA2 level on intracellular Ca(2+) homeostasis and contractile properties in isolated cardiomyocytes. When compared with wild-type controls, SR Ca(2+) stores and Ca(2+) release in myocytes of SERCA2 heterozygous mice were decreased by approximately 40-60% and approximately 30-40%, respectively, and the rate of myocyte shortening and relengthening were each decreased by approximately 40%. However, the rate of Ca(2+) transient decline (tau) was not altered significantly, suggesting that compensation was occurring in the removal of Ca(2+) from the cytosol. Phospholamban, which inhibits SERCA2, was decreased by approximately 40% in heterozygous hearts, and basal phosphorylation of Ser-16 and Thr-17, which relieves the inhibition, was increased approximately 2- and 2.1-fold. These results indicate that reduced expression and increased phosphorylation of phospholamban provides compensation for decreased SERCA2 protein levels in heterozygous heart. Furthermore, both expression and current density of the sarcolemmal Na(+)-Ca(2+) exchanger were up-regulated. These results demonstrate that a decrease in SERCA2 levels can directly modify intracellular Ca(2+) homeostasis and myocyte contractility. However, the resulting deficit is partially compensated by alterations in phospholamban/SERCA2 interactions and by up-regulation of the Na(+)-Ca(2+) exchanger.  相似文献   

7.
The energetic effect of extracellular Na(+) removal and readmission (in a nominally Ca(2+)-free perfusate) in Langendorff-perfused ventricles of transgenic mice (TM), which overexpress the sarcolemmal Na(+)-Ca(2+) exchanger; normal mice (NM); young (7-12 days old) rats (YR); and older (13-20 days old) rats (OR) was studied. In all heart muscles, extracellular Na(+) removal induced an increase in heat production (H(1)). Na(+) readmission further increased heat production to a peak value (H(2)) followed by a decrease toward initial values. These effects were more marked in the YR and TM as compared with the OR and NM groups, respectively. Caffeine (1 mM), ryanodine (0.2 microM), and verapamil (1 microM) decreased H(1) and H(2) in both rat groups. EGTA (1 mM) decreased H(1) and H(2) in the YR but not in the OR group. Thapsigargin (1 microM) decreased H(1) and H(2) in all four hearts preparations. A possible interpretation is that Na(+)-Ca(2+) exchange acts as an energy-saving mechanism to prevent Ca(2+) accumulation at the junctional sarcoplasmic reticulum zone (JSR) and thus prevents further release of Ca(2+). Extracellular Na(+) removal lead to Ca(2+) accumulation in the JSR inducing further SR-Ca(2+) release and increased energy release. Na(+) readmission removes the accumulated Ca(2+) at the JSR (cleft) zone by exchanging Ca(2+) with Na(+) producing a transitory increase in energy release due to Na(+)-K pump activation.  相似文献   

8.
9.
10.
Ion transport and regulation of Na(+)-Ca(2+) exchange were examined for two alternatively spliced isoforms of the canine cardiac Na(+)-Ca(2+) exchanger, NCX1.1, to assess the role(s) of the mutually exclusive A and B exons. The exchangers examined, NCX1.3 and NCX1.4, are commonly referred to as the kidney and brain splice variants and differ only in the expression of the BD or AD exons, respectively. Outward Na(+)-Ca(2+) exchange activity was assessed in giant, excised membrane patches from Xenopus laevis oocytes expressing the cloned exchangers, and the characteristics of Na(+)(i)- (i.e., I(1)) and Ca(2+)(i)- (i.e., I(2)) dependent regulation of exchange currents were examined using a variety of experimental protocols. No remarkable differences were observed in the current-voltage relationships of NCX1.3 and NCX1.4, whereas these isoforms differed appreciably in terms of their I(1) and I(2) regulatory properties. Sodium-dependent inactivation of NCX1.3 was considerably more pronounced than that of NCX1.4 and resulted in nearly complete inhibition of steady state currents. This novel feature could be abolished by proteolysis with alpha-chymotrypsin. It appears that expression of the B exon in NCX1.3 imparts a substantially more stable I(1) inactive state of the exchanger than does the A exon of NCX1.4. With respect to I(2) regulation, significant differences were also found between NCX1.3 and NCX1.4. While both exchangers were stimulated by low concentrations of regulatory Ca(2+)(i), NCX1.3 showed a prominent decrease at higher concentrations (>1 microM). This does not appear to be due solely to competition between Ca(2+)(i) and Na(+)(i) at the transport site, as the Ca(2+)(i) affinities of inward currents were nearly identical between the two exchangers. Furthermore, regulatory Ca(2+)(i) had only modest effects on Na(+)(i)-dependent inactivation of NCX1.3, whereas I(1) inactivation of NCX1.4 could be completely eliminated by Ca(2+)(i). Our results establish an important role for the mutually exclusive A and B exons of NCX1 in modulating the characteristics of ionic regulation and provide insight into how alternative splicing tailors the regulatory properties of Na(+)-Ca(2+) exchange to fulfill tissue-specific requirements of Ca(2+) homeostasis.  相似文献   

11.
The Na(+)-Ca(2+) exchanger (NCX) mediated Ca(2+) fluxes are essential for handling Ca(2+) homeostasis in many cell-types. Eukaryotic NCX variants contain regulatory CBD1 and CBD2 domains, whereas in distinct variants the Ca(2+) binding to Ca3-Ca4 sites of CBD1 results either in sustained activation, inhibition or no effect. CBD2 contains an alternatively spliced segment, which is expressed in a tissue-specific manner although its impact on allosteric regulation remains unclear. Recent studies revealed that the Ca(2+) binding to Ca3-Ca4 sites results in interdomain tethering of CBDs, which rigidifies CBDs movements with accompanied slow dissociation of "occluded" Ca(2+). Here we investigate the effects of CBD2 variants on Ca(2+) occlusion in the two-domain construct (CBD12). Mutational studies revealed that both sites (Ca3 and Ca4) contribute to Ca(2+) occlusion, whereas after dissociation of the first Ca(2+) ion the second Ca(2+) ion becomes occluded. This mechanism is common for the brain, kidney and cardiac splice variants of CBD12, although the occluded Ca(2+) exhibits 20-50-fold difference in off-rates among the tested variants. Therefore, the spliced exons on CBD2 affect the rate-limiting step of the occluded Ca(2+) dissociation at the primary regulatory sensor to shape dynamic features of allosteric regulation in NCX variants.  相似文献   

12.
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).  相似文献   

13.
Spatial and temporal regulation of intracellular Ca2+ concentrations is a fundamental requirement for life. The mammalian cardiac Na+-Ca2+ exchanger serves as the main mechanism for Ca2+ efflux after heart contraction. Exchange activity is highly regulated by intracellular Ca2+, which binds two regulatory domains (CBD1 and CBD2) and triggers the full activity of the exchanger. We solved the X-ray crystallographic structure of CBD2 in the presence and absence of Ca2+. Together with mutational analysis of the Ca2+ binding sites, this study reveals the crucial role of one of the two bound Ca2+ ions and helps propose hypotheses on the mechanism of regulation of the exchanger.  相似文献   

14.
Agonist-induced contraction of airway smooth muscle (ASM) can be triggered by an elevation in the intracellular Ca(2+) concentration, primarily through the release of Ca(2+) from the sarcoplasmic reticulum (SR). The refilling of the SR is integral for subsequent contractions. It has been suggested that Ca(2+) entry via store-operated cation (SOC) and receptor-operated cation channels may facilitate refilling of the SR. Indeed, depletion of the SR activates substantial inward SOC currents in ASM that are composed of both Ca(2+) and Na(+). Accumulation of Na(+) within the cell may regulate Ca(2+) handling in ASM by forcing the Na(+)/Ca(2+) exchanger (NCX) into the reverse mode, leading to the influx of Ca(2+) from the extracellular domain. Since depletion of the SR activates substantial inward Na(+) current, it is conceivable that the reverse mode of the NCX may contribute to the intracellular Ca(2+) pool from which the SR is refilled. Indeed, successive contractions of bovine ASM, evoked by various agonists (ACh, histamine, 5-HT, caffeine) were significantly reduced upon removal of extracellular Na(+); whereas contractions evoked by KCl were unchanged by Na(+) depletion. Ouabain, a selective inhibitor of the Na(+)/K(+) pump, had no effect on the reductions observed under normal and zero-Na(+) conditions. KB-R7943, a selective inhibitor of the reverse mode of the NCX, significantly reduced successive contractions induced by all agonists without altering KCl responses. Furthermore, KB-R7943 abolished successive caffeine-induced Ca(2+) transients in single ASM cells. Together, these data suggest a role for the reverse mode of the NCX in refilling the SR in ASM following Ca(2+) mobilization.  相似文献   

15.
The C terminus of the rat brain Na(+)-Ca(2+) exchanger (RBE-1; NCX1. 4) (amino acids 875-903) is modeled to contain the last transmembrane alpha helix (amino acids 875-894) and an intracellular extramembraneous tail of 9 amino acids (895-903). Truncation of the last 9 C-terminal amino acids, Glu-895 to stop, did not significantly impair functional expression in HeLa or HEK 293 cells. Truncation, however, of 10 amino acids (Leu-894 to stop; mutant C10) reduced Na(+) gradient-dependent Ca(2+) uptake to 35-39% relative to the wild type parent exchanger, and further truncation of 13 or more amino acids resulted in expression of trace amounts of transport activity. Western analysis indicated that Na(+)-Ca(2+) exchanger protein was produced whether transfection was carried out with functional or non-functional mutants. Immunofluorescence studies of HEK 293 cells expressing N-Flag epitope-tagged wild type and mutant Na(+)-Ca(2+) exchangers revealed that transport activity in whole cells correlated with surface expression. All cells expressing the wild type exchanger or C9 exhibited surface expression of the protein. Only 39% of the cells expressing C10 exhibited surface expression, and none was detected in cells transfected with non-functional mutants C13 and C29. Since functional and non-functional mutants were glycosylated, the C terminus is not mandatory to translocation into the endoplasmic reticulum (ER). Endoglycosidase H digestion of [(35)S]methionine-labeled protein derived from wild type Na(+)-Ca(2+) exchanger and from C10 indicated that resistance to the digestion was acquired after 1 and 5 h of chase, respectively. C29 did not acquire detectable resistance to endoglycosidase H digestion even after 10 h of chase. Taken together, these results suggest that the "cellular quality control machinery" can tolerate the structural change introduced by truncation of the C terminus up to Ser-893 albeit with reduced rate of ER-->Golgi transfer and reduced surface expression of the truncated protein. Further truncation of C-terminal amino acids leads to retention of the truncated protein in the ER, no transfer to the Golgi, and no surface expression.  相似文献   

16.
The electrophoretic mobility of the cardiac Na(+)-Ca(2+) exchange protein is different under reducing and nonreducing conditions. This mobility shift is eliminated in a cysteine-less exchanger, suggesting that the presence or absence of an intramolecular disulfide bond alters the conformation and mobility of the exchanger. Using cysteine mutagenesis and biochemical analysis, we have identified the cysteine residues involved in the disulfide bond. Cysteine 792 in loop h of the exchanger forms a disulfide bond with either cysteine 14 or 20 near the NH(2) terminus. Because the NH(2) terminus is extracellular, the data establish that loop h must also be extracellular. A rearrangement of disulfide bonds has previously been implicated in the stimulation of exchange activity by combinations of reducing and oxidizing agents. We have investigated the role of cysteines in the stimulation of the exchanger by the combination of FeSO(4) and dithiothreitol (Fe-DTT). Using the giant excised patch technique, we find that stimulation of the wild type exchanger by Fe-DTT is primarily due to the removal of a Na(+)-dependent inactivation process. Analysis of mutated exchangers, however, indicates that cysteines are not responsible for stimulation of the exchange activity by Fe-DTT. Ca(2+) blocks modification of the exchanger by Fe-DTT. Disulfide bonds are not involved in redox stimulation of the exchanger, and the modification reaction is unknown. Modulation of Na(+)-dependent inactivation may be a general mechanism for regulation of Na(+)-Ca(2+) exchange activity and may have physiological significance.  相似文献   

17.
The possible contribution of Na(+)-Ca(2+) exchange to the triggering of Ca(2+) release from the sarcoplasmic reticulum in ventricular cells remains unresolved. To gain insight into this issue, we measured the "trigger flux" of Ca(2+) crossing the cell membrane in rabbit ventricular myocytes with Ca(2+) release disabled pharmacologically. Under conditions that promote Ca(2+) entry via Na(+)-Ca(2+) exchange, internal [Na(+)] (10 mM), and positive membrane potential, the Ca(2+) trigger flux (measured using a fluorescent Ca(2+) indicator) was much greater than the Ca(2+) flux through the L-type Ca(2+) channel, indicating a significant contribution from Na(+)-Ca(2+) exchange to the trigger flux. The difference between total trigger flux and flux through L-type Ca(2+) channels was assessed by whole-cell patch-clamp recordings of Ca(2+) current and complementary experiments in which internal [Na(+)] was reduced. However, Ca(2+) entry via Na(+)-Ca(2+) exchange measured in the absence of L-type Ca(2+) current was considerably smaller than the amount inferred from the trigger flux measurements. From these results, we surmise that openings of L-type Ca(2+) channels increase [Ca(2+)] near Na(+)-Ca(2+) exchanger molecules and activate this protein. These results help to resolve seemingly contradictory results obtained previously and have implications for our understanding of the triggering of Ca(2+) release in heart cells under various conditions.  相似文献   

18.
The Na(+)-Ca2+ exchanger from Drosophila was expressed in Xenopus and characterized electrophysiologically using the giant excised patch technique. This protein, termed Calx, shares 49% amino acid identity to the canine cardiac Na(+)-Ca2+ exchanger, NCX1. Calx exhibits properties similar to previously characterized Na(+)-Ca2+ exchangers including intracellular Na+ affinities, current-voltage relationships, and sensitivity to the peptide inhibitor, XIP. However, the Drosophila Na(+)-Ca2+ exchanger shows a completely opposite response to cytoplasmic Ca2+. Previously cloned Na(+)-Ca2+ exchangers (NCX1 and NCX2) are stimulated by cytoplasmic Ca2+ in the micromolar range (0.1- 10 microM). This stimulation of exchange current is mediated by occupancy of a regulatory Ca2+ binding site separate from the Ca2+ transport site. In contrast, Calx is inhibited by cytoplasmic Ca2+ over this same concentration range. The inhibition of exchange current is evident for both forward and reverse modes of transport. The characteristics of the inhibition are consistent with the binding of Ca2+ at a regulatory site distinct from the transport site. These data provide a rational basis for subsequent structure-function studies targeting the intracellular Ca2+ regulatory mechanism.  相似文献   

19.
Palty R  Sekler I 《Cell calcium》2012,52(1):9-15
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.  相似文献   

20.
We report the effects of binding of Mg(2+) to the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. CBD2 is known to bind two Ca(2+) ions using its Ca(2+)-binding sites I and II. Here, we show by nuclear magnetic resonance (NMR), circular dichroism, isothermal titration calorimetry, and mutagenesis that CBD2 also binds Mg(2+) at both sites, but with significantly different affinities. The results from Mg(2+)-Ca(2+) competition experiments show that Ca(2+) can replace Mg(2+) from site I, but not site II, and that Mg(2+) binding affects the affinity for Ca(2+). Furthermore, thermal unfolding circular dichroism data demonstrate that Mg(2+) binding stabilizes the domain. NMR chemical shift perturbations and (15)N relaxation data reveal that Mg(2+)-bound CBD2 adopts a state intermediate between the apo and fully Ca(2+)-loaded forms. Together, the data show that at physiological Mg(2+) concentrations CBD2 is loaded with Mg(2+) preferentially at site II, thereby stabilizing and structuring the domain and altering its affinity for Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号