首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyglutamine expansion mutations in specific proteins underlie the pathogenesis of a group of progressive neurodegenerative disorders, including Huntington’s disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and several spinocerebellar ataxias. The different mutant proteins share ubiquitous expression and abnormal proteostasis, with misfolding and aggregation, but nevertheless evoke distinct patterns of neurodegeneration. This highlights the relevance of the full protein context where the polyglutamine expansion occurs and suggests different interactions with the cellular proteostasis machinery. Molecular chaperones are key elements of the proteostasis machinery and therapeutic targets for neurodegeneration. Here, we provide a focused review on Hsp90, Hsp70, and their co-chaperones, and how their genetic or pharmacological modulation affects the proteostasis and disease phenotypes in cellular and animal models of polyglutamine disorders. The emerging picture is that, in principle, Hsp70 modulation may be more amenable for long-term treatment by promoting a more selective clearance of mutant proteins than Hsp90 modulation, which may further decrease the necessary wild-type counterparts. It seems, nevertheless, unlikely that a single Hsp70 modulator will benefit all polyglutamine diseases. Indeed, available data, together with insights from effects on tau and alpha-synuclein in models of Alzheimer’s and Parkinson’s diseases, indicates that Hsp70 modulators may lead to different effects on the proteostasis of different mutant and wild-type client proteins. Future studies should include the further development of isoform selective inhibitors, namely to avoid off-target effects on Hsp in the mitochondria, and their characterization in distinct polyglutamine disease models to account for client protein-specific differences.  相似文献   

2.
3.
Parkin, the most commonly mutated gene in familial Parkinson's disease, encodes an E3 ubiquitin ligase. A number of candidate substrates have been identified for parkin ubiquitin ligase action including CDCrel-1, o-glycosylated alpha-synuclein, Pael-R, and synphilin-1. We now show that parkin promotes the ubiquitination and degradation of an expanded polyglutamine protein. Overexpression of parkin reduces aggregation and cytotoxicity of an expanded polyglutamine ataxin-3 fragment. Using a cellular proteasome indicator system based on a destabilized form of green fluorescent protein, we demonstrate that parkin reduces proteasome impairment and caspase-12 activation induced by an expanded polyglutamine protein. Parkin forms a complex with the expanded polyglutamine protein, heat shock protein 70 (Hsp70) and the proteasome, which may be important for the elimination of the expanded polyglutamine protein. Hsp70 enhances parkin binding and ubiquitination of expanded polyglutamine protein in vitro suggesting that Hsp70 may help to recruit misfolded proteins as substrates for parkin E3 ubiquitin ligase activity. We speculate that parkin may function to relieve endoplasmic reticulum stress by preserving proteasome activity in the presence of misfolded proteins. Loss of parkin function and the resulting proteasomal impairment may contribute to the accumulation of toxic aberrant proteins in neurodegenerative diseases including Parkinson's disease.  相似文献   

4.
Although inhibition of the ubiquitin proteasome system has been postulated to play a key role in the pathogenesis of neurodegenerative diseases, studies have also shown that proteasome inhibition can induce increased expression of neuroprotective heat-shock proteins (HSPs). The global gene expression of primary neurons in response to treatment with the proteasome inhibitor lactacystin was studied to identify the widest range of possible pathways affected. Our results showed changes in mRNA abundance, both at different time points after lactacystin treatment and at different lactacystin concentrations. Genes that were differentially up-regulated at the early time point but not when most cells were undergoing apoptosis might be involved in an attempt to reverse proteasome inhibitor-mediated apoptosis and include HSP70, HSP22 and cell cycle inhibitors. The up-regulation of HSP70 and HSP22 appeared specific towards proteasome inhibitor-mediated cell death. Overexpression of HSP22 was found to protect against proteasome inhibitor-mediated loss of viability by up to 25%. Genes involved in oxidative stress and the inflammatory response were also up-regulated. These data suggest an initial neuroprotective pathway involving HSPs, antioxidants and cell cycle inhibitors, followed by a pro-apoptotic response possibly mediated by inflammation, oxidative stress and aberrant activation of cell cycle proteins.  相似文献   

5.
6.
Huntington’s disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdh Q7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdh Q7/Q111) or homozygous (STHdh Q111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdh Q7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts.  相似文献   

7.
Huntington's disease (HD) is a familial neurodegenerative disorder caused by an abnormal expansion of CAG repeats in the coding region of huntingtin gene. A major hallmark of HD is the proteolytic production of N-terminal fragments of huntingtin containing polyglutamine repeats that form ubiquitinated aggregates in the nucleus and cytoplasm of the affected neurons. However, the mechanism by which the mutant huntingtin causes neurodegeneration is not well understood. Here, we found that oxidative stimuli enhance the polyglutamine-expanded truncated N-terminal huntingtin (mutant huntingtin) aggregation and mutant huntingtin-induced cell death. Oxidative stimuli also lead to rapid proteasomal dysfunction in the mutant huntingtin expressing cells as compared to normal glutamine repeat expressing cells. Overexpression of Cu/Zn superoxide dismutase (SOD1), Hsp40 or Hsp70 reverses the oxidative stress-induced proteasomal malfunction, mutant huntingtin aggregation, and death of the mutant huntingtin expressing cells. Finally, we show the higher levels of expression of SOD1 and DJ-1 in the mutant huntingtin expressing cells. Our result suggests that oxidative stress-induced proteasomal malfunction might be linked with mutant huntingtin-induced cell death.  相似文献   

8.
Huntington's disease (HD) is one of eight established triplet repeat neurodegenerative disorders, which are collectively caused by the genetic expansion of polyglutamine repeats. While the mechanism(s) by which polyglutamine expansion causes neurodegeneration in each of these disorders is being intensely investigated, the underlying cause of polyglutamine toxicity has not been fully elucidated. A number of studies have focused on the potential role of protein aggregation and disruption of the proteasome proteolytic pathway in polyglutamine-mediated neurodegeneration. However, at present it is not clear whether polyglutamine-mediated protein aggregation is sufficient to induce cell death, nor has it been clearly determined whether proteasome inhibition precedes, coincides, or occurs as the result of the formation of polyglutamine-associated protein aggregation. To address these important components of polyglutamine toxicity, in the present study we utilized neural SH-SY5Y cells stably transfected with polyglutamine-green fluorescent protein constructs to examine the effects of polyglutamine expansion on protein aggregation, proteasome activity, and neural cell survival. Data from the present study demonstrate that polyglutamine expansion does not dramatically impair proteasome activity or elevate protein aggregate formation under basal conditions, but does significantly impair the ability of the proteasome to respond to stress, and increases stress-induced protein aggregation following stress, all in the absence of neural cell death.  相似文献   

9.
10.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The N-terminal fragment of AR containing the expanded polyglutamine tract aggregates in cytoplasm and/or in nucleus and induces cell death. Some chaperones such as Hsp40 and Hsp70 have been identified as important regulators of polyglutamine aggregation and/or cell death in neuronal cells. Recently, Hsp105alpha, expressed at especially high levels in mammalian brain, has been shown to suppress apoptosis in neuronal cells and prevent the aggregation of protein caused by heat shock in vitro. However, its role in polyglutamine-mediated cell death and toxicity has not been studied. In the present study, we examined the effects of Hsp105alpha on the aggregation and cell toxicity caused by expansion of the polyglutamine tract using a cellular model of SBMA. The transient expression of truncated ARs (tARs) containing an expanded polyglutamine tract caused aggregates to form in COS-7 and SK-N-SH cells and concomitantly apoptosis in the cells with the nuclear aggregates. When Hsp105alpha was overexpressed with tAR97 in the cells, Hsp105alpha was colocalized to aggregates of tAR97, and the aggregation and cell toxicity caused by expansion of the polyglutamine tract were markedly reduced. Both beta-sheet and alpha-helix domains, but not the ATPase domain, of Hsp105alpha were necessary to suppress the formation of aggregates in vivo and in vitro. Furthermore, Hsp105alpha was found to localize in nuclear inclusions formed by ARs containing an expanded polyglutamine tract in tissues of patients and transgenic mice with SBMA. These findings suggest that overexpression of Hsp105alpha suppresses cell death caused by expansion of the polyglutamine tract without chaperone activity, and the enhanced expression of the essential domains of Hsp105alpha in brain may provide an effective therapeutic approach for CAG repeat diseases.  相似文献   

11.
The olfactory bulb is one of the most vulnerable brain regions in age‐related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here, we describe age‐related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2–4 months. To model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro‐oxidant paraquat. Toxin‐induced increases were observed in Hsp70, Hsp25, and Hsp32. To determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells.

  相似文献   


12.
A major hallmark of the polyglutamine diseases is the formation of neuronal intranuclear inclusions of the disease proteins that are ubiquitinated and often associated with various chaperones and proteasome components. But, how the polyglutamine proteins are ubiquitinated and degraded by the proteasomes are not known. Here, we demonstrate that CHIP (C terminus of Hsp70-interacting protein) co-immunoprecipitates with the polyglutamine-expanded huntingtin or ataxin-3 and associates with their aggregates. Transient overexpression of CHIP increases the ubiquitination and the rate of degradation of polyglutamine-expanded huntingtin or ataxin-3. Finally, we show that overexpression of CHIP suppresses the aggregation and cell death mediated by expanded polyglutamine proteins and the suppressive effect is more prominent when CHIP is overexpressed along with Hsc70.  相似文献   

13.
Several neurodegenerative diseases including Huntington disease, Machado-Joseph disease and spinocerebellar ataxias type 1 are caused by expansion of a polyglutamine tract within their respective gene products. In order to assess the role of the tract, 293T cells were transfected with plasmids that contain various lengths of CAG repeat encoding polyglutamine without the repeat disorder proteins: (CAG)27, (CAG)40, (CAG)80, (CAG)130, and (CAG)180. Except for (CAG)27, and (CAG)40, 293T cells showed a common set of morphological alterations such as shrinkage, rounding and surface blebbing when the expanded stretch was expressed. In addition, nuclear staining experiments showed chromatin condensation in COS-7 cells transfected with the vectors containing expanded CAG repeats. These results indicate that expanded polyglutamine itself is able to induce cell death, suggesting existence of a common molecular mechanism in the etiology of neurodegenerative polyglutamine diseases.  相似文献   

14.
The 26S proteasome is an ATP-dependent proteolytic complex found in all eukaryotes, archaebacteria, and some eubacteria. Inhibition of the 26S proteasome causes pleiotropic effects in cells, including cellular apoptosis, a fact that has led to the use of the 26S proteasome inhibitor, bortezomib, for treatment of the multiple myeloma cancer. We previously showed that in addition to the effects of proteolysis, inhibition of the 26S proteasome causes a rapid decrease in the protein synthesis rate due to phosphorylating alfa subunit of the eukaryotic translation initiation factor 2 (eIF2alpha) by the heme-regulated inhibitor kinase (HRI). In order to test whether inhibition of the 26S proteasome causes the same effect in cancer cells, we have investigated the influence of two commonly used proteasome inhibitors, bortezomib and MG132, on the phosphorylation status of eIF2alpha in B16F10 melanoma and 4T1 breast cancer cells. It was found that both of the inhibitors caused rapid phosphorylation of eIF2alpha. Taking into account that the Hsp70 is a critical component needed for the HRI activation and enzymatic activity, we have tested a possible participation of this protein in the eIF2alpha phosphorylation event. However, treatment of the cells with two structurally different Hsp70 inhibitors, quercetin and KNK437, in the presence of the proteasome inhibitors did not affect the eIF2alpha phosphorylation. In addition, neither protein kinase C (PKC) nor p38 mitogen-activated protein kinase (MAPK) was required for the proteasome inhibitor-induced eIF2alpha phosphorylation; futhermore, both the PKC inhibitor staurosporine and the p38 MAPK inhibitor SB203580 caused enchanced phosphorylation of eLF2alpha. Zinc (II) protoporphyrine IX (ZnPP), an inhibitor of the heme-oxygenase-1 (HO-1), which has also been previously reported to be involved in HRI activation, also failed to prevent the induction of eIF2alpha phosphorylation in the presence of the proteasome inhibitor bortezomib or MG132.  相似文献   

15.
Mitochondrial dysfunction, proteasome inhibition, and α-synuclein aggregation are thought to play important roles in the pathogenesis of Parkinson's disease (PD). Rare cases of early-onset PD have been linked to mutations in the gene encoding DJ-1, a protein with antioxidant and chaperone functions. In this study, we examined whether DJ-1 protects against various stresses involved in PD, and we investigated the underlying mechanisms. Expression of wild-type DJ-1 rescued primary dopaminergic neurons from toxicity elicited by rotenone, proteasome inhibitors, and mutant α-synuclein. Neurons with reduced levels of endogenous DJ-1 were sensitized to each of these insults, and DJ-1 mutants involved in familial PD exhibited decreased neuroprotective activity. DJ-1 alleviated rotenone toxicity by up-regulating total intracellular glutathione. In contrast, inhibition of α-synuclein toxicity by DJ-1 correlated with up-regulation of the stress-inducible form of Hsp70. RNA interference studies revealed that this increase in Hsp70 levels was necessary for DJ-1-mediated suppression of α-synuclein aggregation, but not toxicity. Our findings suggest that DJ-1 acts as a versatile pro-survival factor in dopaminergic neurons, activating different protective mechanisms in response to a diverse range of PD-related insults.  相似文献   

16.
M A Loo  T J Jensen  L Cui  Y Hou  X B Chang    J R Riordan 《The EMBO journal》1998,17(23):6879-6887
Maturation of wild-type CFTR nascent chains at the endoplasmic reticulum (ER) occurs inefficiently; many disease-associated mutant forms do not mature but instead are eliminated by proteolysis involving the cytosolic proteasome. Although calnexin binds nascent CFTR via its oligosaccharide chains in the ER lumen and Hsp70 binds CFTR cytoplasmic domains, perturbation of these interactions alone is without major influence on maturation or degradation. We show that the ansamysin drugs, geldanamycin and herbimycin A, which inhibit the assembly of some signaling molecules by binding to specific sites on Hsp90 in the cytosol or Grp94 in the ER lumen, block the maturation of nascent CFTR and accelerate its degradation. The immature CFTR molecule was detected in association with Hsp90 but not with Grp94, and geldanamycin prevented the Hsp90 association. The drug-enhanced degradation was decreased by lactacystin and other proteasome inhibitors. Therefore, consistent with other examples of countervailing effects of Hsp90 and the proteasome, it would seem that this chaperone may normally contribute to CFTR folding and, when this function is interfered with by an ansamycin, there is a further shift to proteolytic degradation. This is the first direct evidence of a role for Hsp90 in the maturation of a newly synthesized integral membrane protein by interaction with its cytoplasmic domains on the ER surface.  相似文献   

17.
18.
19.
The 26S proteasome is an ATP-dependent proteolytic complex found in all eukaryotes, archaebacteria, and some eubacteria. Inhibition of the 26S proteasome causes pleiotropic effects in cells, including cellular apoptosis, a fact that has led to the use of the 26S proteasome inhibitor, bortezomib, for treatment of the multiple myeloma cancer. We previously showed that in addition to the effects of proteolysis, inhibition of the 26S proteasome causes a rapid decrease in the protein synthesis rate due to phosphorylating alfa subunit of the eukaryotic translation initiation factor 2 (eIF2α) by the heme-regulated inhibitor kinase (HRI). In order to test whether inhibition of the 26S proteasome causes the same effect in cancer cells, we have investigated the influence of two commonly used proteasome inhibitors, bortezomib and MG132, on the phosphorylation status of eIF2α in B16F10 melanoma and 4T1 breast cancer cells. It was found that both of the inhibitors caused rapid phosphorylation of eIF2α. Taking into account that the Hsp70 is a critical component needed for the HRI activation and enzymatic activity, we have tested a possible participation of this protein in the eIF2α phosphorylation event. However, treatment of the cells with two structurally different Hsp70 inhibitors, quercetin and KNK437, in the presence of the proteasome inhibitors did not affect the eIF2α phosphorylation. In addition, neither protein kinase C (PKC) nor p38 mitogen-activated protein kinase (MAPK) was required for the proteasome inhibitor-induced eIF2α phosphorylation; furthermore, both the PKC inhibitor staurosporine and the p38 MAPK inhibitor SB203580 caused enchanced phosphorylation of eIF2α. Zinc(II) protoporphyrine IX (ZnPP), an inhibitor of the heme-oxygenase-1 (HO-1), which has also been previously reported to be involved in HRI activation, also failed to prevent the induction of eIF2α phosphorylation in the presence of the proteasome inhibitor bortezomib or MG132.  相似文献   

20.
Missense mutant proteins, such as those produced in individuals with genetic diseases, are often misfolded and subject to processing by intracellular quality control systems. Previously, we have shown using a yeast system that enzymatic function could be restored to I278T cystathionine β-synthase (CBS), a cause of homocystinuria, by treatments that affect the intracellular chaperone environment. Here, we extend these studies and show that it is possible to restore significant levels of enzyme activity to 17 of 18 (94%) disease causing missense mutations in human cystathionine β-synthase (CBS) expressed in Saccharomyces cerevisiae by exposure to ethanol, proteasome inhibitors, or deletion of the Hsp26 small heat shock protein. All three of these treatments induce Hsp70, which is necessary but not sufficient for rescue. In addition to CBS, these same treatments can rescue disease-causing mutations in human p53 and the methylene tetrahydrofolate reductase gene. These findings do not appear restricted to S. cerevisiae, as proteasome inhibitors can restore significant CBS enzymatic activity to CBS alleles expressed in fibroblasts derived from homocystinuric patients and in a mouse model for homocystinuria that expresses human I278T CBS. These findings suggest that proteasome inhibitors and other Hsp70 inducing agents may be useful in the treatment of a variety of genetic diseases caused by missense mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号