首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we identified the multifunctional protein GC1q-R as a novel vasopressin V(2) receptor (V(2)R) interacting protein. For this purpose, we have developed a proteomic approach combining pull-down assays using a cyclic peptide mimicking the third intracellular loop of V(2)R as a bait and mass spectrometry analyses of proteins isolated from either rat or human kidney tissues or the HEK 293 cell line. Co-immunoprecipitation of GC1q-R with the c-Myc-tagged h-V(2)R expressed in a HEK cell line confirmed the existence of a specific interaction between GC1q-R and the V(2) receptor. Then, construction of a mutant receptor in i3 loop allowed us to identify the i3 loop arginine cluster of the vasopressin V(2) receptor as the interacting determinant for GC1q-R interaction. Using purified receptor as a bait and recombinant (74-282) GC1q-R, we demonstrated a direct and specific interaction between these two proteins via the arginine cluster.  相似文献   

2.
A protein that binds kainate with high affinity has been purified and cloned from frog brain (Rana pipiens) and has approximately 35% sequence homology with mammalian non-N-methyl-D-aspartate glutamate receptors, some of which have been shown to be ligand-gated ion channels. Frog brain membranes and membranes from Chinese hamster ovary (CHO) cells transfected with the cDNA coding for the frog kainate-binding protein (CHO-4 cells) bound kainate with essentially identical affinity (KD values of 1.9 and 2.1 nM, respectively). In both tissues, the affinity for kainate decreased 9-fold in the presence of 100 microM GTP gamma S (guanosine 5'-O-(3-thio)triphosphate). No specific kainate binding to nontransfected CHO cell membranes was observed. GTP gamma S and GDP were effective inhibitors of kainate binding, while cGMP and adenosine 5'-O-(3-thio)triphosphate had no effect in either frog brain membranes or CHO-4 membranes. Pretreatment of CHO-4 cell membranes with pertussis toxin led to a 34% decrease in kainate binding. Kainate increased the binding of [3H]5'-guanylyl imidodiphosphate by 61%, and the rate of GTP hydrolysis by up to 5-fold. These results indicate that the kainate receptor cloned from frog brain can interact functionally with a G protein present in CHO-4 cell membranes.  相似文献   

3.
The diastereomers of adenosine 5'-O-[1-thio]triphosphate (ATP[alpha S]) and adenosine 5'-O-[2-thio]triphosphate (ATP[beta S]) were utilized to seek unambiguous assignment of Mg2+ coordination to ATP when bound to ATP-AMP phosphotransferase from beef heart mitochondria (AK2). Similarly, the diastereomers of guanosine 5'-O-[thio]triphosphate (GTP[alpha S]) and guanosine 5'-O-[2-thio]triphosphate (GTP[beta S]) were utilized to seek unambiguous assignment of Mg2+ coordination to GTP when bound to GTP-AMP phosphotransferase from beef heart mitochondria (AK3). Furthermore the diastereomers of guanosine 5'-O-[1-thio]diphosphate (GDP-[alpha S]) have been used to assign Mg2+ coordination to GDP when bound to AK3. The ratios (V for isomer Sp)/(V for isomer Rp) obtained in the presence of Mg2+ and Cd2+ are compared to those already published for ATP-AMP phosphotransferases from pig muscle (AK1) [Kalbitzer et al. (1983) Eur. J. Biochem. 133, 221-227] and from baker's yeast (AKy) [Tomasselli and Noda (1983) Eur. J. Biochem. 132, 109-115]. In all cases, coordination of Mg2+ to the beta-phosphate via the pro-R oxygen is present, as shown by reversal of specificity for the diastereomers of ATP [beta S] or GTP [beta S] respectively on changing the metal ion. In contrast, there is no reversal of specificity for the diastereomers of ATP [alpha S] or GTP[alpha S], or for GDP[alpha S] in the case of AK3 for the reverse reaction, indicating that there is no interaction of the metal with the alpha-phosphate group. The observed stereospecificity for the alpha-thiophosphate is consistent with the assumption of an interaction of the pro-R oxygen of the alpha-phosphate group with the enzyme.  相似文献   

4.
Whereas the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), induced NADPH-oxidase-catalyzed superoxide (O2-) formation in human neutrophils, purine and pyrimidine nucleotides per se did not stimulate NADPH oxidase but enhanced O2- formation induced by submaximally and maximally stimulatory concentrations of fMet-Leu-Phe up to fivefold. On the other hand, FMet-Leu-Phe primed neutrophils to generate O2- upon exposure to nucleotides. At a concentration of 100 microM, purine nucleotides enhanced O2- formation in the effectiveness order adenosine 5'-O-[3-thio]triphosphate (ATP[gamma S]) greater than ITP greater than guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) greater than ATP = adenosine 5'-O-[2-thio]triphosphate (Sp-diastereomer) = GTP = guanosine 5'-O-[2-thio]diphosphate (GDP[beta S] = ADP greater than adenosine 5'-[beta, gamma-imido]triphosphate = adenosine 5'-O-[2-thio]triphosphate] (Rp-diastereomer). Pyrimidine nucleotides stimulated fMet-Leu-Phe-induced O2- formation in the effectiveness order uridine 5'-O-[3-thio]triphosphate (UTP[gamma S]) = UTP greater than CTP. Uracil (UDP[beta S]) = uridine 5'-O[2-thio]triphosphate (Rp-diastereomer) (Rp)-UTP[beta S]) = UTP greater than CTP. Uracil nucleotides were similarly effective potentiators of O2- formation as the corresponding adenine nucleotides. GDP[beta S] and UDP[beta S] synergistically enhanced the stimulatory effects of ATP[gamma S], GTP[gamma S] and UTP[gamma S]. Purine and pyrimidine nucleotides did not induce degranulation in neutrophils but potentiated fMet-Leu-Phe-induced release of beta-glucuronidase with similar nucleotide specificities as for O2- formation. In contrast, nucleotides per se induced aggregation of neutrophils. Treatment with pertussis toxin prevented aggregation induced by both nucleotides and fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via nucleotide receptors, the nucleotide specificity of which is different from nucleotide receptors in other cell types. Neutrophil nucleotide receptors are coupled to guanine-nucleotide-binding proteins. As nucleotides are released from cells under physiological and pathological conditions, they may play roles as intercellular signal molecules in neutrophil activation.  相似文献   

5.
The adrenal steroid dehydroepiandrosterone (DHEA) has no known cellular receptor or unifying mechanism of action, despite evidence suggesting beneficial vascular effects in humans. Based on previous data from our laboratory, we hypothesized that DHEA binds to specific cell-surface receptors to activate intracellular G-proteins and endothelial nitric-oxide synthase (eNOS). We now pharmacologically characterize a putative plasma membrane DHEA receptor and define its associated G-proteins. The [3H]DHEA binding to isolated plasma membranes from bovine aortic endothelial cells was of high affinity (K(d) = 48.7 pm) and saturable (B(max) = 500 fmol/mg protein). Structurally related steroids failed to compete with DHEA for binding. The putative DHEA receptor was functionally coupled to G-proteins, because guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) inhibited [3H]DHEA binding to plasma membranes by 69%, and DHEA increased [35S]GTPgammaS binding by 157%. DHEA stimulated [35S]GTPgammaS binding to Galpha(i2) and Galpha(i3), but not to Galpha(i1) or Galpha(o). Pretreatment of plasma membranes with antibody to Galpha(i2) or Galpha(i3), but not to Galpha(i1), inhibited the DHEA activation of eNOS. Thus, DHEA receptors are expressed on endothelial cell plasma membranes and are coupled to eNOS activity through Galpha(i2) and Galpha(i3). These novel findings should allow us to isolate the putative receptor and reevaluate the physiological role of DHEA activity.  相似文献   

6.
In this study a synthetic analog of the calmodulin-binding domain of myosin light chain kinase, a 17-amino-acid peptide (M5) was used to examine the possible role of calmodulin in melanotropin receptor function. Binding of beta-melanocyte-stimulating hormone to its membrane receptor and subsequent stimulation of adenylate cyclase (AC) were found to be specifically inhibited by M5 in a dose-dependent and noncompetitive manner, both in intact M2R melanoma cells and in a plasma membrane preparation derived thereof. Half-maximal inhibition of both hormone binding and melanotropin-sensitive AC activity was shown to occur at approximately 1 microM M5. In contrast, stimulation of AC by prostaglandin E1, guanosine 5'-O-(3-thio)triphosphate, forskolin, and unstimulated enzyme activity were unaffected by the presence of M5, under the same assay conditions. Furthermore, addition of a molar excess of calmodulin to the AC assay completely abolished the inhibitory effects of the peptide on melanotropin-stimulated AC activity. Other peptides of similar size, which bind to calmodulin with low affinity (e.g. glucagon, somatostatin, and vasoactive intestinal peptide), were shown to be totally ineffective in inhibiting melanotropin-sensitive AC. These findings, along with those shown previously for other antagonists of calmodulin, suggest a role for an M5-binding protein, as of yet unidentified, involved in the regulation of the melanotropin receptor function.  相似文献   

7.
In this paper we examine the effect of the vasodilator peptide bradykinin on endothelial cell regulation of phosphoinositide (PI) turnover. The data show that the activation of PI turnover by bradykinin in bovine pulmonary artery endothelial cells is insensitive to pertussis toxin, which ADP ribosylates a membrane protein of mol wt 40,000. However, this effect of bradykinin can be potentiated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S), an activator of G proteins, and depressed by guanosine 5'-O-(2-thio)diphosphate (GDP beta S), an inhibitor of G proteins. After endothelial cells were preincubated for 1 h with GTP gamma S, there was a three- to fourfold increase in PI turnover. Preincubation of cells with GDP beta S did not affect the basal level of PI turnover, but completely prevented activation of PI turnover by bradykinin. 4 beta-Phorbol-12 beta-myristate-13 alpha-acetate can block the bradykinin-stimulated inositol monophosphate formation in cultured endothelial cells. The effects of bradykinin on PI turnover were blocked by B2 antagonists but not by B1 antagonists. Taken together, these results indicate that in endothelial cells the bradykinin B2 receptor is coupled to phospholipase C via a G protein (or proteins) that is not a substrate for pertussis toxin (neither Gi nor Go).  相似文献   

8.
Vasopressin (VP) receptors belong to the widespread G protein-coupled receptor family. The crucial role of VP receptor intracellular loops in the coupling with the heterotrimeric G proteins was previously demonstrated by construction of a vasopressin receptor chimera. Yet, no fine structural data are available concerning the receptor molecular determinants involved in their interactions with G proteins. In this study, we synthesized both a linear and a cyclic form of the second intracellular loop (i2) of the human V(1a) vasopressin receptor isoform that is important for the interaction between the alphaq/alpha11 G protein and the receptor. These two peptides are biologically active. They specifically inhibit vasopressin binding to the V(1a) receptor, suggesting that the corresponding endogenous peptides contribute to the structure of the vasopressin binding site via intra- or intermolecular interactions with the core of the V(1a) receptor. The i2 peptide structures were determined by (1)H NMR. Both exhibit a helix and helical elements in their N- and C-terminal parts, respectively, separated by a turn imposed by a proline residue. More interestingly, the central Pro-Leu motif conserved in many GPCRs and thought to be important for coupling to G proteins can adopt different conformations. The "U" shape structure of the i2 loop is compatible with its anchoring to transmembrane domains III and IV and is very similar to the shape of bovine rhodopsin i2. Altogether, these data contribute to a better understanding of the structure of a not yet crystallized GPCR using the mimetic peptide approach.  相似文献   

9.
The vasopressin type 2 (V2R) receptor belongs to the class of G-protein coupled receptors. It is mainly expressed in the membrane of kidney tubules, where it is activated by the extracellular arginine vasopressin. In men, inactivating and activating mutations cause nephrogenic diabetes insipidus and the nephrogenic syndrome of inappropriate antidiuresis respectively. Like most GPCRs, V2R's third intracellular loop (V2R-i3) is involved in the binding and activation of its major effector, the GαS protein. We overexpressed the V2R??????? fragment corresponding to V2R-i3 as a fusion protein with thioredoxin A at the N-terminus and a hexahistidine tag between the two proteins. Recombinant V2R-i3 was designed to harbor N- and C-terminal cysteines, in order to introduce a disulfide bond between N- and C-terminal extremities and hence reproduce the hairpin fold presumably present in the full-length receptor. The fusion protein was produced as inclusion bodies in Escherichia coli and purified by nickel affinity chromatography under denaturing conditions. After a refolding step, thioredoxin and hexahistidine tags were specifically cleaved with the tobacco etch virus protease. The hydrolysis yield, initially very low, increased up to 80% thanks to optimization of buffers and refolding methods. The cleaved fragment, V2???????, devoid of any tag, was then eluted with low imidazole concentrations in a second nickel affinity chromatography in denaturing conditions. The final yield was sufficient to prepare a 1?N-13C labeled NMR sample suitable for triple resonance experiments. We assigned all NMR resonances and confirmed the correct peptide sequence. As expected, the peptide forms a hairpin stabilized by a disulfide bond between its N- and C-terminal parts, thus mimicking its native structure in the full-length receptor. This study may provide a strategy for producing and studying the structure/function relationship of GPCR fragments.  相似文献   

10.
The function of structural domains of the beta-adrenergic receptor were probed by studying the ability of tryptic fragments of the receptor to catalyze the binding of guanosine-5'-O-(3-thiotriphosphate (GTP gamma S) to the GTP-binding regulatory protein, Gs. beta-Adrenergic receptor purified from turkey erythrocytes was treated with trypsin under nondenaturing conditions. Such treatment decreased beta-adrenergic ligand binding activity by only 15-25%. Active components of the limit digest were repurified by affinity chromatography on alprenolol-agarose and then reconstituted with purified Gs into unilamellar phospholipid vesicles. After reconstitution, the proteolyzed receptor was able to catalyze agonist-stimulated binding of GTP gamma S to Gs at a rate and extent equivalent to that of the nonproteolyzed receptor. The proteolyzed receptor was also partially activated upon reduction by dithiothreitol, as previously reported for the intact receptor (Pedersen, S.E., and Ross, E.M. (1985) J. Biol. Chem. 260, 14150-14157). The repurified, active tryptic digest contained two detectable peptides. One, of approximately 2 X 10(4) Da, contained either four or five of the amino-terminal membrane-spanning domains plus the intervening hydrophilic loops but not the amino-terminal extracellular, glycosylated peptide. The second, of 9,000-10,000 Da, was composed essentially of the two carboxyl-terminal membrane-spanning domains and the intervening extracellular, hydrophilic loop. These data indicate that most of the large intracellular hydrophilic loop and the hydrophilic, carboxyl-terminal region of the receptor are not necessary for the agonist-stimulated regulation of Gs.  相似文献   

11.
The CB1 cannabinoid receptor in N18TG2 neuroblastoma cells inhibits adenylate cyclase, and this response can be mimicked by a peptide corresponding to the juxtamembrane C-terminal domain (CB(1)401-417). Guanosine 5'-O-(3-thio)triphosphate binding to G proteins can be stimulated by both peptide CB(1)401-417 and peptides corresponding to the third intracellular loop [Howlett, A.C., Song, C., Berglund, B.A., Wilken, G.H. & Pigg, J.J. (1998) Mol. Pharmacol. 53, 504-510; Mukhopadhyay, S., Cowsik, S.M., Welsh, W.J. & Howlett, A.C. (1999) Biochemistry 38, 3447-3455]. In Chaps-solubilized N18TG2 membranes, the CB1 receptor coimmunoprecipitated with all three Gi subtypes. Pertussis toxin significantly reduced the CB(1) receptor-G alpha(i) association and attenuated the CB(1)401-417-induced inhibition of adenylate cyclase. CB(1)401-417 significantly reduced the CB(1) receptor association with G alpha(i3), but not with G alpha(i1) or G alpha(i2). In contrast, third intracellular loop peptides significantly reduced the CB(1) receptor association with G alpha(i1) and G alpha(i2), but not G alpha(i3). These interactions are specific for the CB(1) receptor because a peptide corresponding to the juxtamembrane C-terminal domain of the CB(2) receptor failed to compete for the association of the CB1 receptor with any of the Gi alpha subtypes, and was not able to activate Gi proteins to inhibit adenylate cyclase. These studies indicate that different domains of the CB(1) receptor direct the interaction with specific G protein subtypes.  相似文献   

12.
The intensity of the tryptophan fluorescence of the alpha subunits of guanine nucleotide-binding regulatory proteins increases when they bind guanosine 5'-O-(3-thio)triphosphate (GTY gamma S). The kinetics of the fluorescence enhancement and of the measured binding of [35S]GTP gamma S are well correlated. The addition of Mg2+ to the nucleotide-bound proteins causes a further, rapid increase in the fluorescence intensity. Similar effects result from exposure of the proteins to F- and Mg2+, and the required concentration of F- is reduced by the inclusion of Al3+. It is presumed that the more highly fluorescent state of the G protein alpha subunits represents their active conformation.  相似文献   

13.
14.
The molecular weight of the vasoactive intestinal peptide (VIP) receptor in rat lung and its interaction with the stimulatory guanine nucleotide-binding protein (Gs) were assessed by covalent cross-linking, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunological techniques. Studies with two cross-linking agents indicated that the VIP receptor in this tissue is a single polypeptide of Mr = 54,000. The VIP-occupied receptor could be cross-linked to neighboring proteins after detergent solubilization; higher molecular weight complexes of Mr = 114,000 and 184,000 were formed. Immunoblotting with antisera against G-protein subunits demonstrated that both complexes contained the alpha-subunit of Gs as well as the 125I-VIP cross-linked receptor whereas only the Mr = 184,000 complex contained the beta-subunit. Pretreatment with GTP reduced the prominence of these complexes, verifying the functional nature of this receptor-Gs association. Studies with a third cross-linking agent, ethylene glycol bis(succinimidyl succinate), provided direct evidence of physically associated, ternary VIP-receptor-Gs complexes actually in the membrane milieu. That these complexes were functionally associated with shown by their inhibition by anti-Gs alpha anti-serum. Since treatment of membranes with guanosine 5'-O-(3-thiotriphosphate) resulted in the separation of the VIP-cross-linked receptor from Gs such that no cross-linking could occur, we conclude that the binding of GTP analogs induces a conformational change in Gs in the membrane milieu.  相似文献   

15.
Detergent-solubilized preparations of the beta-adrenergic receptor (R) and of the guanyl nucleotide binding proteins (Gs) were extensively treated to remove phospholipids and cholesterol. Reconstitution of an R-Gs system was subsequently performed in the presence of a mixture of natural phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine or the synthetic dioleoyl derivatives of the same phospholipids. In both cases, an additional lipid was required for the agonist-dependent activation of Gs. The requirement could be fulfilled by alpha-tocopherol, or by unsaturated fatty acids such as oleic acid. Inclusion of this non-phosphorylated lipid in the reconstituted system enhanced the isoproterenol-dependent activation of Gs by guanosine 5'-O-[gamma-thio]triphosphate 16-33-fold. The rate of activation was largely dependent on the addition of the agonist. Efficient functional reconstitution of R-Gs was thus achieved in a totally defined lipid system. Additional studies of the reconstituted system and of the native membrane led to the notion that the non-phosphorylated lipid plays a role in the function of the hormone-R complex.  相似文献   

16.
A novel mutant of the LLC-PK1 renal epithelial cell line, VPR1, was isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and selection using a photoactivatable vasopressin analogue [1-(3-mercapto)propionic acid, 8-(N6-4-azidophenylamidino)lysine] vasopressin. The VPR1 mutant cell line possessed less than 5% parental V2 receptor binding for vasopressin but exhibited normal calcitonin receptor binding. In contrast to LLC-PK1 cells (wild type), VPR1 cells exhibited no response to vasopressin in terms of in vitro adenylate cyclase activation, in vivo cAMP production, or urokinase-type plasminogen activator induction. The responses of VPR1 cells to other agents, such as calcitonin, the adenylate cyclase activator forskolin, the GTP analogue guanosine 5'-[beta, gamma-imino] triphosphate, 8-bromo adenosine-3',5'-monophosphate were comparable to those of the parental cell line. Somatic cell hybrids were derived from the cell lines LLC-PK1 and VPR1 and analyzed for the dominance/recessiveness of the VPR1 mutant phenotype. Hybrids were found to possess normal vasopressin binding activity as well as functional responses to the hormone, indicating that the mutation affecting the V2 receptor in VPR1 cells is recessive. The VPR1 cell line may thus have application as a recipient for the expression of the V2 receptor gene using DNA-transfer.  相似文献   

17.
D C May  E M Ross 《Biochemistry》1988,27(13):4888-4893
When reconstituted phospholipid vesicles that contain purified beta-adrenergic receptors and the GTP-binding regulatory protein Gs were preincubated with agonist before the addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), the typical receptor-stimulated GTP gamma S binding reaction was preceded by an even more rapid burst of GTP gamma S binding. This burst was studied in detail at 0 degree C. The rate of the burst was second order in nucleotide and Gs [k assoc approximately 2 X 10(7) (M.min)-1], consistent with diffusion-controlled binding. The magnitude of the burst was always less than the number of receptors present and was roughly linear with receptor number when similarly prepared vesicles were compared. There was no obvious quantitative correlation between the burst and the amount of Gs. The species that gave rise to the burst formed with t1/2 approximately 15 min at 0 degree C in the presence of agonist and decayed by approximately 3 min upon addition of antagonist or detergent. Formation and decay of this species was much faster at at 30 degrees C. The data suggest that a complex of agonist, receptor, and Gs that is primed for the rapid binding of guanine nucleotide can form and be analyzed in reconstituted vesicles.  相似文献   

18.
Vasopressin antisense peptide interactions with the V1 receptor   总被引:1,自引:0,他引:1  
The molecular recognition hypothesis, that peptide ligands and their receptor binding sites are encoded by complementary nucleotide sequences, was tested for arginine vasopressin (AVP) and its V1 receptor. Binding of [125I] [d(CH2)5,Sar7]AVP (a selective V1 vasopressin antagonist radioligand) or [3H]AVP to rat liver plasma membranes was inhibited by peptides known to bind to V1 receptors but not by the AVP complementary peptide (Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala) (PVA). Rabbit anti-PVA antibodies were nonimmunoreactive with any protein in rat liver membranes or in a partially purified preparation from rat liver containing reconstitutable vasopressin binding activity. Furthermore, there was no suppression of the AVP pressor effect by PVA in vivo using a rat blood pressure bioassay. These findings do not support the hypothesis that the V1 receptor binding site is encoded by the antisense DNA strand to AVP.  相似文献   

19.
Several guanine nucleotide exchange factors (GEFs) for Rho-GTPases have been identified, all of them containing a Dbl homology (DH) and pleckstrin homology (PH) domain, but exhibiting different specificities to the Rho family members, Rho, Rac and Cdc42. We report here that KIAA0380, a protein with a tandem DH/PH domain, an amino-terminal PDZ domain and a regulator of G protein signalling (RGS) homology domain, is a specific GEF for RhoA, but not for Rac1 and Cdc42, as determined by GDP release, guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding and protein binding assays. When expressed in J82 cells, DH/PH domain-containing forms of KIAA0380 induced actin stress fibers, whereas expression of the RGS homology domain prevented lysophosphatidic acid (LPA)-induced stress fiber formation.  相似文献   

20.
The beta1-adrenergic receptor (beta1AR) is a key cell surface signaling protein expressed in the heart and other organs that mediates the actions of catecholamines of the sympathetic nervous system. A polymorphism in the intracellular cytoplasmic tail near the seventh transmembrane-spanning segment of the human beta1AR has been identified in a cohort of normal individuals. At amino acid position 389, Gly or Arg can be found (allele frequencies 0.26 and 0. 74, respectively), the former previously considered as the human wild-type beta1AR. Using site-directed mutagenesis to mimic the two variants, CHW-1102 cells were permanently transfected to express the Gly-389 and Arg-389 receptors. In functional studies with matched expression, the Arg-389 receptors had slightly higher basal levels of adenylyl cyclase activities (10.7 +/- 1.2 versus 6.1 +/- 0.4 pmol/min/mg). However, maximal isoproterenol-stimulated levels were markedly higher for the Arg-389 as compared to the Gly-389 receptor (63.3 +/- 6.1 versus 20.9 +/- 2.0 pmol/min/mg). Agonist-promoted [35S]guanosine 5'-O-(thiotriphosphate) binding was also increased with the Arg-389 receptor consistent with enhanced coupling to Gs and increased adenylyl cyclase activation. In agonist competition studies carried out in the absence of guanosine 5'-(beta, gamma-imido)triphosphate, high affinity binding could not be resolved with the Gly-389 receptor, whereas Arg-389 displayed an accumulation of the agonist high affinity receptor complex (RH = 26%). Taken together, these data indicate that this polymorphic variation of the human beta1AR results in alterations of receptor-Gs interaction with functional signal transduction consequences, consistent with its localization in a putative G-protein binding domain. The genetic variation of beta1AR at this locus may be the basis of interindividual differences in pathophysiologic characteristics or in the response to therapeutic betaAR agonists and antagonists in cardiovascular and other diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号