首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abdelhaleem M  Maltais L  Wain H 《Genomics》2003,81(6):618-622
Nucleic acid helicases are characterized by the presence of the helicase domain containing eight motifs. The sequence of the helicase domain is used to classify helicases into families. To identify members of the DEAD and DEAH families of human RNA helicases, we used the helicase domain sequences to search the nonredundant peptide sequence database. We report the identification of 36 and 14 members of the DEAD and DEAH families of putative RNA helicases, including several novel genes. The gene symbol DDX had been used previously for both DEAD- and DEAH-box families. We have now adopted DDX and DHX symbols to denote DEAD- and DEAH-box families, respectively. Members of human DDX and DHX families of putative RNA helicases play roles in differentiation and carcinogenesis.  相似文献   

3.
RNA helicases of the DEAD-box and related families have been found to be required for all processes involving RNA molecules. Biochemical and genetic analyses have shown that at least two RNA helicases are required for translation initiation in yeast. Although it is generally believed that these enzymes are necessary to unwind secondary structures in the 5' untranslated region of mRNAs, their exact role has not been convincingly shown. We discuss here our present knowledge of the function of eIF4A and Ded1p, two DEAD-box proteins required for translation in eukaryotic cells.  相似文献   

4.
Helicase structure and mechanism   总被引:15,自引:0,他引:15  
Structural information on helicase proteins has expanded recently beyond the DNA helicases Rep and PcrA, and the hepatitis C virus RNA helicase to include UvrB, members of the DEA(D/H)-box RNA helicase family, examples of DnaB-related helicases and RuvB. The expanding database of structures has clarified the structural 'theme and variations' that relate the different helicase families. Furthermore, information is emerging on the functions of the conserved helicase motifs and their participation in the mechanisms by which these proteins catalyze the remodeling of DNA and RNA in ATP-dependent activities.  相似文献   

5.
RNA helicases play many essential roles including cell development and growth. Using degenerate oligonucleotide primers designed to amplify DNA fragments flanked by the highly conserved helicase motifs VLDEAD and YIHRIG and genomic DNAs from the malarial parasites as a template, we have cloned two putative RNA helicase genes (546 and 540 bp) from P. falciparum and one gene (546 bp) from P. cynomologi. Southern blot analysis revealed that these could be multiple and single-copy genes in P. falciparum and P. cynomolgi, respectively. Several members of the RNA helicase gene family share sequence identity with malarial parasite's helicases ranging from 30 to 76%, suggesting that they are functionally related. The discovery of such a multitude of putative RNA helicase genes in malarial parasites suggested that RNA helicase activities may be involved in many essential biological processes. Further characterization of these helicases may also help in designing parasite-specific inhibitors/drugs which specifically inhibit the parasite's growth without affecting the host.  相似文献   

6.
7.
8.
Members of the DEAD box family of RNA helicases, which are characterised by the presence of twelve conserved motifs (including the signature D-E-A-D motif) within a structurally conserved ‘helicase’ core, are involved in all aspects of RNA metabolism. Apart from unwinding RNA duplexes, which established these proteins as RNA helicases, DEAD box proteins have been shown to also catalyse RNA annealing and to displace proteins from RNA. DEAD box proteins generally act as components of large multi-protein complexes and it is thought that interactions, via their divergent N- and C-terminal extensions, with other factors in the complexes may be responsible for the many different functions attributed to these proteins.  相似文献   

9.
RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1′s enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an ‘open’ to a ‘closed’-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change.  相似文献   

10.
11.
A statistically significant similarity was demonstrated between the amino acid sequences of 4 Escherichia coli helicases and helicase subunits, a family of non-structural proteins of eukaryotic positive-strand RNA viruses and 2 herpesvirus proteins all of which contain an NTP-binding sequence motif. Based on sequence analysis and secondary structure predictions, a generalized structural model for the ATP-binding core is proposed. It is suggested that all these proteins constitute a superfamily of helicases (or helicase subunits) involved in NTP-dependent duplex unwinding during DNA and RNA replication and recombination.  相似文献   

12.
Linder P  Lasko P 《Cell》2006,125(2):219-221
RNA helicases of the DEAD-box family are involved in essentially all RNA-dependent cellular processes. In this issue of Cell, Sengoku et al. (2006) solve the structure of the DEAD-box protein Vasa in the presence of RNA and a nonhydrolyzable ATP analog and provide important insights into how this family of helicases unwinds RNA.  相似文献   

13.
玉米DEAD-box RNA解旋酶基因的克隆及分析   总被引:1,自引:0,他引:1  
DEAD-box RNA解旋酶参与RNA转录、前体mRNA剪切、核糖体发生、核质运输、蛋白质翻译、RNA降解等重要的生命活动.根据本室在S-Mo17Rf3Rf3cDNA芯片研究中,检测到花粉发育后期RNA解旋酶上调表达的结果,应用RACE技术从S-Mo17Rf3Rf3花粉中克隆得到该RNA解旋酶基因全长cDNA,命名为ZmRH2并在GenBank注册登记 (DQ327709).序列分析表明:该cDNA全长1 652bp,从第163 bp开始到1 386bp含有一个开放阅读框,编码407个氨基酸.其编码的蛋白质具有DEAD-box RNA解旋酶特有的9个保守模体,与水稻、拟南芥和豌豆中的DEAD-box RNA解旋酶的氨基酸序列存在着很高的同源性.RT-PCR分析表明,该基因在近等基因系S-Mo17Rf3Rf3和S-Mo17rf3rf3的叶、根、和雌穗中的表达没有差异,但在花丝和花粉中有明显差异.  相似文献   

14.
DEXD/H box putative RNA helicases are required for pre-rRNA processing in Saccharomyces cerevisiae, although their exact roles and substrates are unknown. To characterize the significance of the conserved motifs for helicase function, a series of five mutations were created in each of the eight essential RNA helicases (Has1, Dbp6, Dbp10, Mak5, Mtr4, Drs1, Spb4, and Dbp9) involved in 60S ribosomal subunit biogenesis. Each mutant helicase was screened for the ability to confer dominant negative growth defects and for functional complementation. Different mutations showed different degrees of growth inhibition among the helicases, suggesting that the conserved regions do not function identically in vivo. Mutations in motif I and motif II (the DEXD/H box) often conferred dominant negative growth defects, indicating that these mutations do not interfere with substrate binding. In addition, mutations in the putative unwinding domains (motif III) demonstrated that conserved amino acids are often not essential for function. Northern analysis of steady-state RNA from strains expressing mutant helicases showed that the dominant negative mutations also altered pre-rRNA processing. Coimmunoprecipitation experiments indicated that some RNA helicases associated with each other. In addition, we found that yeasts disrupted in expression of the two nonessential RNA helicases, Dbp3 and Dbp7, grew worse than when either one alone was disrupted.  相似文献   

15.
The 17 putative RNA helicases required for pre-rRNA processing are predicted to play a crucial role in ribosome biogenesis by driving structural rearrangements within preribosomes. To better understand the function of these proteins, we have generated a battery of mutations in five putative RNA helicases involved in 18S rRNA synthesis and analyzed their effects on cell growth and pre-rRNA processing. Our results define functionally important residues within conserved motifs and demonstrate that lethal mutations in predicted ATP binding-hydrolysis motifs often confer a dominant negative phenotype in vivo when overexpressed in a wild-type background. We show that dominant negative mutants delay processing of the 35S pre-rRNA and cause accumulation of pre-rRNA species that normally have low steady-state levels. Our combined results establish that not all conserved domains function identically in each protein, suggesting that the RNA helicases may have distinct biochemical properties and diverse roles in ribosome biogenesis.  相似文献   

16.
17.
Mitochondria are semiautonomous organelles which contain their own genome. Both maintenance and expression of mitochondrial DNA require activity of RNA and DNA helicases. In Saccharomyces cerevisiae the nuclear genome encodes four DExH/D superfamily members (MSS116, SUV3, MRH4, IRC3) that act as helicases and/or RNA chaperones. Their activity is necessary for mitochondrial RNA splicing, degradation, translation and genome maintenance. In humans the ortholog of SUV3 (hSUV3, SUPV3L1) so far is the best described mitochondrial RNA helicase. The enzyme, together with the matrix-localized pool of PNPase (PNPT1), forms an RNA-degrading complex called the mitochondrial degradosome, which localizes to distinct structures (D-foci). Global regulation of mitochondrially encoded genes can be achieved by changing mitochondrial DNA copy number. This way the proteins involved in its replication, like the Twinkle helicase (c10orf2), can indirectly regulate gene expression. Here, we describe yeast and human mitochondrial helicases that are directly involved in mitochondrial RNA metabolism, and present other helicases that participate in mitochondrial DNA replication and maintenance. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

18.
Pre-mRNA splicing requires the activities of several ATPases from the DEAH-box, DEAD-box and Ski2-like helicase families to control conformational rearrangements within the spliceosome. Recent findings indicate that several spliceosomal helicases can act at multiple stages of the splicing reaction, and information on how those multiple actions are controlled are emerging. The recently solved crystal structure of the DEAH-box helicase Prp43 provides novel insights into the similarities and differences between the three helicase families. Here we discuss the potential family-specific mechanisms of spliceosomal RNA helicases and their regulation.  相似文献   

19.
20.
在RNA代谢过程中,需要许多蛋白和核酸的参与,其中一类蛋白就是RNA解旋酶。RNA解旋酶通过水解ATP获得能量来参与RNA代谢的多个方面,包括核内转录、pre-mRNA的剪切、核糖体发生、核质运输、蛋白质翻译、RNA降解、细胞器内基因的表达。DEAD-box蛋白家族是RNA解旋酶中最大的亚家族,它具有9个保守结构域,因motifyⅡ的保守氨基酸序列Asp-Glu-Ala-Asp(DEAD)而命名。该家族在酵母、拟南芥(Arabidopsis thaliana Heynh.)和人类基因组中都有较多的家庭成员。近年来,研究者对拟南芥DEAD-box蛋白家族的结构和功能进行了一些研究,本文着重总结DEAD-box基因家族对拟南芥生长发育的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号