首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
新疆的小麦品种(系)苗期和成株期抗叶锈性鉴定   总被引:1,自引:0,他引:1  
对来自新疆的104个小麦品种、高代品系及35个含有已知抗叶锈基因载体品种,在苗期接种12个中国小麦叶锈菌生理小种进行抗叶锈基因推导分析和分子检测;2007-2008年和2008-2009年连续2年度对这些材料进行成株抗叶锈性鉴定并筛选慢叶锈性品种。研究结果显示,在41个品种中共鉴定出6个已知抗叶锈基因Lr26、Lr34、Lr50、Lr3ka、Lr1和Lr14a,其中Lr26存在于21个品种中,Lr34在17个品种被发现,Lr1和Lr14a分别存在于3个品种中,还有2个品种携带Lr3ka以及1个品种携带Lr50。2年田间抗叶锈性鉴定筛选出7个慢叶锈性品种,可用于小麦抗病育种。  相似文献   

2.
本研究旨在明确小麦农家品种中可能含有的抗叶锈病基因,为抗源的选择和利用提供理论依据。以15个小麦农家品种、感病对照品种郑州5389和36个含有已知抗叶锈病基因的载体品种为材料,苗期接种19个具有鉴别力的叶锈菌生理小种进行基因推导,同时利用12个与抗叶锈病基因紧密连锁的分子标记进行分析。为明确其成株期抗性,分别于2016-2017年和2017-2018年在河北保定对小麦农家品种、感病对照品种郑州5389与慢锈品种SAAR进行田间接种,调查并记录田间严重度及普遍率。基因推导和分子标记检测结果显示,在15个小麦农家品种中共检测到7个抗叶锈病基因,其中部分品种还有多个抗性基因,如红狗豆含有Lr1和Lr46;黄花麦含有Lr13和Lr34;大白麦含有Lr14b和Lr26;洋麦含有Lr37和Lr46;成都光头含有Lr34和Lr46;墨脱麦和西山扁穗含有Lr26和Lr46。部分品种含有1个成株期慢叶锈病抗性基因,如同家坝小麦、武都白茧儿、边巴春麦-6、白花麦含有Lr34;红抢麦、白扁穗和白火麦含有Lr46。这些携带有效抗叶锈病基因的农家品种,可为小麦抗叶锈病育种提供抗源。  相似文献   

3.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

4.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

5.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

6.
Spring wheat nursery accessions, including 18 spring wheat lines derived in CIMMYT, Mexico, and 12 spring wheat cultivars bred in Poland, along with cultivars Frontana and Sumai 3 as resistant controls, were examined for resistance to leaf rust under field conditions. Multipathotype tests with 16 different pathogen isolates were performed for postulation of Lr genes in Polish cultivars. Besides, STS markers for resistance genes Lr1, Lr9, Lr10, Lr24, Lr28, Lr37 were analysed in the studied cultivars and lines with Thatcher near-isogenic lines as positive controls. All Polish cultivars appeared to be susceptible to leaf rust. Ten of the CIMMYT nursery lines (IPG-SW: #7, 11, 14, 21, 22, 23, 27, 29, 30, 32) and cv. Frontana were resistant in the same environment and can be sources of resistance genes. Marker for the Lr10 gene was identified in 6 accessions (IPG-SW #14, 22, 23, 29, 30, 32) exhibiting resistance to leaf rust, whereas markers for Lr1 and Lr28 genes were observed in all the examined accessions. STS markers for Lr9, Lr24 and Lr37 genes were not identified in the investigated accessions.  相似文献   

7.
Wheat leaf rust (Puccinia triticina) is becoming a serious concern in Spanish wheat, especially on durum wheat where acreage has enormously increased. Host resistance is the preferred method of disease control, but the virulence spectrum of the leaf rust population in Spain is currently unknown. In order to deploy effective Lr genes, this study was conducted to characterize the virulence spectrum of leaf rust in Andalusia (Spain). Isolates were obtained from surveys of wheat fields across Andalusia from 1998 to 2000. From 56 isolates phenotyped, 35 pathotypes were identified. Virulence to Lr10, Lr11, Lr14a, Lr14b and Lr18 was high (>96%), while virulence to Lr9 and Lr24 were not found. None of the isolates collected from durum wheat were virulent to Lr1, Lr3, Lr3ka, Lr3bg, Lr15, Lr16 and Lr17, while many of the isolates collected on bread wheat showed virulence on these genes, indicating a certain specialization in the leaf rust infecting durum wheat. Population dynamics of current wheat leaf rust pathotypes in terms of mutation and migration are discussed.  相似文献   

8.
Host resistance is the most sustainable method of controlling leaf rust which can be achieved through exploring resistance genes by gene postulation and/or molecular markers. The experiment was conducted to postulate leaf rust resistance genes in 20 Iranian wheat cultivars using 10 Puccinia triticina pathotypes. Six sequence-tagged site and sequence-characterised amplified region markers were also used to detect the genes Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37. The genes Lr3a, Lr3Ka, Lr10, Lr15, Lr19, Lr26, Lr28, Lr30 and Lr27 + Lr31 genes were postulated to be present either singly or in combination. The cultivars Toos and Dabira were found to have no effective seedling resistance gene(s); The former was shown to carry none of the genes, while the latter carried Lr10, Lr24 and Lr37 based on molecular markers. It was not possible to postulate resistance genes in Sirvan, Backcross Roshan, Zagross and Chamran cultivars. However, molecular association indicated the presence of Lr19, Lr10 and Lr24 in Sirvan, Backcross Roshan, and Chamran, respectively while none in Zagross.  相似文献   

9.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

10.
A collection of 68 cultivars of common wheat has been screened for leaf rust resistance genes with the use of molecular markers. Markers of genes Lr1, Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, and Lr26 have been used. It has been suggested that allele Xgwm295 be used as a marker for identifying the Lr34 gene. The genes originating from Triticum aestivum L., as well as the Lr26 gene contained in rye translocation 1RS, are the most frequent. Genes originating from wild wheats were rarer in the cultivars studied.  相似文献   

11.
Genetic resistance is the most effective approach to managing wheat leaf rust. The aim of this study was to characterize seedling and adult plant leaf rust resistance of a world wheat collection. Using controlled inoculation with ten races of Puccinia triticina, 14 seedling resistance genes were determined or postulated to be present in the collection. Lr1, Lr3, Lr10 and Lr20 were the most prevalent genes around the world while Lr9, Lr14b, Lr3ka and/or Lr30 and Lr26 were rare. To confirm some gene postulations, the collection was screened with gene-specific molecular markers for Lr1, Lr10, Lr21 and Lr34. Although possessing the Lr1 and/or Lr10 gene-specific marker, 51 accessions showed unexpected high infection types to P. triticina race BBBD. The collection was tested in the field, where rust resistance ranged from nearly immune or highly resistant with severity of 1 % and resistant host response to highly susceptible with severity of 84 % and susceptible host response. The majority of the accessions possessing the adult plant resistance (APR) gene Lr34 had a maximum rust severity of 0–35 %, similar to or better than accession RL6058, a Thatcher-Lr34 near-isogenic line. Many accessions displayed an immune response or a high level of resistance under field conditions, likely as a result of synergy between APR genes or between APR and seedling resistance genes. However, accessions with three or more seedling resistance genes had an overall lower field severity than those with two or fewer. Immune or highly resistant accessions are potential sources for improvement of leaf rust resistance. In addition, some lines were postulated to have known but unidentified genes/alleles or novel genes, also constituting potentially important sources of novel resistance.  相似文献   

12.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

13.
In 1995–2004 we investigated leaf rust virulence in Slovakia on Thatcher near isogenic lines (NILs) with genes Lr1, Lr2a, Lr2b, Lr2c, Lr3a, Lr9, Lr10, Lr11, Lr15, Lr17, Lr19, Lr21, Lr23, Lr24, Lr26 and Lr28. According to reaction of leaf rust isolates resistance genes Lr9 and Lr19 were completely effective to all examined pathotypes in all years. The resistance genes Lr24 and Lr28 were also completely effective to all examined pathotypes till the year 2001. In the year 2001 we detected 20% and 10% virulent isolates on NILs Lr24 and Lr28, respectively. According to the reaction of investigated isolates from the territory of Slovakia on NILs, resistance genes Lr2c, Lr3a, Lr11, Lr17, Lr21, Lr23 and Lr26 were mostly ineffective. During the 1994–2004 period we detected 16 races of leaf rust (races 2, 2SaBa, 6, 6SaBa, 12, 12SaBa, 14, 14SaBa, 57, 57SaBa, 61, 61SaBa, 62SaBa, 77, 77SaBa, 77/57SaBa). The most frequently determined races were 61SaBa and 77SaBa, which occurred in all years. Among frequently determined races we can assign race 12SaBa as well. According to the field tests in 2001–2004 good resistance to leaf rust was displayed by the cvs Arida (Lr13, Lru), Eva (Lr3, Lru) and Solara (Lru).  相似文献   

14.
5R618是高抗叶锈病小麦品系。为了确定该品系所携带的抗叶锈基因,以5R618与感病小麦品种郑州5389杂交获得F1,自交获得F2分离群体以及F2∶3家系,用叶锈菌生理小种THJP对亲本、F2分离群体以及F2∶3家系进行叶锈抗性鉴定,然后进行分子标记分析。结果显示,5R618对生理小种THJP的抗病性由1对显性基因控制,该基因暂命名为Lr5R。经过亲本和抗感池间分子标记筛选以及F2∶3家系的标记检测,Lr5R定位于染色体3DL上,barc71和STS24-16是Lr5R最近的2个标记,遗传距离分别为0.9 c M和2.1 c M。  相似文献   

15.
The occurrence and distribution of seedling resistance genes and the presence of adult plant resistance to powdery mildew, was investigated in a collection of 155 Nordic bread wheat landraces and cultivars by inoculation with 11 powdery mildew isolates. Eighty-nine accessions were susceptible in the seedling stage, while 66 accessions showed some resistance. Comparisons of response patterns allowed postulation of combinations of genes Pm1a, Pm2, Pm4b, Pm5, Pm6, Pm8 and Pm9 in 21 lines. Seedling resistance was three times more frequent in spring wheat than in winter wheat. The most commonly postulated genes were Pm1a+Pm2+Pm9 in Sweden, Pm5 in Denmark and Norway, and Pm4b in Finland. Forty-five accessions were postulated to carry only unidentified genes or a combination of identified and unidentified genes that could not be resolved by the 11 isolates. Complete resistance to all 11 isolates was present in 18 cultivars. Adult plant resistance was assessed for 109 accessions after natural infection with a mixture of races. In all, 92% of the accessions developed less than 3-5% pathogen coverage while nine lines showed 10-15% infected leaf surface. The characterization of powdery mildew resistance in Nordic wheat germplasm could facilitate the combination of resistance genes in plant breeding programmes to promote durability of resistance and disease management.  相似文献   

16.

Key message

Six QTL for adult plant resistance to leaf rust, including two QTL effective against additional diseases, were identified in a RIL population derived from a cross between Shanghai 3/Catbird and Naxos.

Abstract

Leaf rust is an important wheat disease and utilization of adult-plant resistance (APR) may be the best approach to achieve long-term protection from the disease. The CIMMYT spring wheat line Shanghai 3/Catbird (SHA3/CBRD) showed a high level of APR to Chinese Puccinia triticina pathotypes in the field. To identify APR genes in this line, a mapping population of 164 recombinant inbred lines (RILs) was developed from a cross of this line and Naxos, a moderately susceptible German cultivar. The RILs were evaluated for final disease severity (FDS) at Baoding, Hebei province, and Zhoukou, Henan province, in the 2010–2011 and 2011–2012 cropping seasons. QTL analysis detected one major QTL derived from SHA3/CBRD on chromosome 2BS explaining from 15 to 37 % of the phenotypic variance across environments. In addition one minor resistance QTL on chromosome 1AL from SHA3/CBRD and four minor QTL from Naxos on chromosomes 2DL, 5B, 7BS, and 7DS were also detected. SHA3/CBRD also possessed seedling resistance gene Lr26, and Naxos contained Lr1 based on gene postulation following tests with an array of P. triticina pathotypes and molecular marker assays. These seedling resistance and APR genes and their closely linked molecular markers are potentially useful for improving leaf rust resistance in wheat breeding programs.  相似文献   

17.
It is known that few wheat cultivars maintain their resistance to rust diseases for a long period of time, particularly when crop populations become genetically more uniform. A number of genetically diverse, so far unexploited, sources of rust resistance in the natural as well as mutagenized population of wheat cultivars were identified. Several of these genes were placed in agronomically superior well-adapted backgrounds so that they could be used as pre-breeding stocks for introducing genetic diversity for resistance in a crop population. Some of these stocks when employed as parents in several cross combinations in a breeding programme have generated a number of promising cultivars with diversity for resistance.Many presently grown wheats in India, near-isogenic lines each with Lr14b, Lr14ab, Lr30 and certain international cultivars were identified as possessing diverse sources of adult plant resistance (APR) to leaf rust. Prolonged leaf rust resistance in some of the Indian cultivars was attributed to the likely presence of Lr34 either alone or in combination with other APR components. Tests of allelism carried out in certain cultivars that continue to show adequate levels of field resistance confirm the presence of Lr34, which explains the role that this gene has played in imparting durability for resistance to leaf rust. Also, Lr34 in combination with other APR components increases the levels of resistance, which suggests that combination of certain APR components should be another important strategy for breeding cultivars conferring durable and adequate levels of resistance. A new adult plant leaf rust resistance source that seems to be associated with durability in Arjun has been postulated. Likewise, cultivars possessing Sr2 in combination with certain other specific genes have maintained resistance to stem rust.Further, non-specific resistances that were transferred across widely different genotypes into two of the popular Indian wheats provided easily usable materials to the national breeding programmes for imparting durable resistance to stripe rust.  相似文献   

18.
A method is described for establishing isolates of Puccinia recondita f. sp. tritici (causal agent of brown rust of wheat) on detached seedling leaf segments. The method was used to compare the responses of leaf segments and intact seedling leaves for 28 differential genotypes inoculated with eight rust isolates. Leaf segments were incubated at two post-inoculation temperatures (17 and 23C) and intact seedlings at 20–25 C. Reliable determinations of isolate pathogenicity was obtained using detached leaf segments of wheats with genes Lr l. Lr2a, Lr3a, Lr3bg., Lr3ka, Lr9, Lr15, Lrl9. Lr20, Lr24, Lr25. Lr26, Lr28, and Lr30 at both post-inoculation temperatures, and for wheats with genes Lr2b. Lr2c, Lrl7, Lr23, Lr27 + Lr31 and LrH, at 23°C. Differences between leaf segments and intact leaves for the remaining eight differentials were attributed to inconsistent or poor expression of genes in detached leaf segments. By repeating tests with detached leaf segments, it was possible to establish the pathogenicities of the isolates on all of these differentials except those carrying Lr13, Lr14a, Lr16 and Lr18. Potential uses and limitations of the technique in studies of Puccinia recondita f. sp. tritici are discussed.  相似文献   

19.
The aim of the present study was to detect candidate DNA markers for selected leaf rust resistance genes. A total number of 286 loci in the 'Thatcher' near-isogenic lines carrying resistance gene Lr1, Lr9, Lr10, Lr13, Lr19, Lr21, Lr24, Lr26, Lr28, Lr35, and Lr37 were screened for DNA polymorphism by the PstIAFLP method. A survey with 33 selective primers yielded 16 candidate markers. Further validation studies on cultivars characterized for the presence and absence of selected resistance genes confirmed specificity of markers for Lr24, Lr26 and Lr37. The AFLP-based marker P42-530 was successfully converted into an STS marker. The new marker was linked with the Lr37-specific marker (CslVrga13) at the distance of 1.7 cM. The PstIAFLP method was found to be effective in the identification of DNA changes induced in hexaploid wheat by translocations from Agropyron elongatum, Secale cereale and Aegilops ventricosa.  相似文献   

20.
8个小麦育种亲本抗叶锈基因分析   总被引:1,自引:0,他引:1  
选取19个小麦叶锈菌生理小种对8个小麦育种亲本进行成株期和苗期抗叶锈病鉴定及基因推导,同时利用与24个抗叶锈基因紧密连锁或共分离的31个分子标记进行分子检测。推测出L83#-5与L83#-6含有Lr1,可能含有Lr2c和Lr42;L/PL2003-1含有Lr1,可能含有Lr2c、Lr28和Lr42;贵农13号可能含有Lr28;92R137可能含有Lr2c和Lr28;L201含有Lr1,可能含有Lr2c、Lr16和Lr28;TM可能含有Lr41和其他抗叶锈基因。研究结果表明,测试的8个小麦育种亲本中TM的抗叶锈性最好,具有很好的抗叶锈病应用潜力,可作为小麦抗叶锈病育种的重要抗源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号