首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent genome size estimates for Arctic amphipods have revealed the largest genomes known in the Crustacea. Here we provide additional data for 7 species of caridean shrimp collected from the Canadian Arctic and the Gulf of St. Lawrence. Genome sizes were estimated by flow cytometry and haploid C-values ranged from 8.53 +/- 0.30 pg in Pandalus montagui (Pandalidae) to 40.89 +/- 1.23 pg in Sclerocrangon ferox (Crangonidae). The value for S. ferox represents the largest decapod genome yet recorded and indicates a 38-fold variation in genome size within this order. These data suggest that large genomes may be relatively common in Arctic crustaceans, and underline the need for further comparative studies.  相似文献   

2.
Genome evolution in the genus Sorghum (Poaceae)   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective. METHODS: DNA content was determined by flow cytometry. A Sorghum phylogeny was constructed based on combined nuclear ITS and chloroplast ndhF DNA sequences. KEY RESULTS: Chromosome counts (2n = 10, 20, 30, 40) were, with few exceptions, concordant with published numbers. New chromosome numbers were obtained for S. amplum (2n = 30) and S. leiocladum (2n = 10). 2C DNA content varies 8.1-fold (1.27-10.30 pg) among the 21 Sorghum species. 2C DNA content varies 3.6-fold from 1.27 pg to 4.60 pg among the 2n = 10 species and 5.8-fold (1.52-8.79 pg) among the 2n = 20 species. The x = 5 genome size varies over an 8.8-fold range from 0.26 pg to 2.30 pg. The mean 2C DNA content of perennial species (6.20 pg) is significantly greater than the mean (2.92 pg) of the annuals. Among the 21 species studied, the mean x = 5 genome size of annuals (1.15 pg) and of perennials (1.29 pg) is not significantly different. Statistical analysis of Australian species showed: (a) mean 2C DNA content of annual (2.89 pg) and perennial (7.73 pg) species is significantly different; (b) mean x = 5 genome size of perennials (1.66 pg) is significantly greater than that of the annuals (1.09 pg); (c) the mean maximum latitude at which perennial species grow (-25.4 degrees) is significantly greater than the mean maximum latitude (-17.6) at which annual species grow. CONCLUSIONS: The DNA sequence phylogeny splits Sorghum into two lineages, one comprising the 2n = 10 species with large genomes and their polyploid relatives, and the other with the 2n = 20, 40 species with relatively small genomes. An apparent phylogenetic reduction in genome size has occurred in the 2n = 10 lineage. Genome size evolution in the genus Sorghum apparently did not involve a 'one way ticket to genomic obesity' as has been proposed for the grasses.  相似文献   

3.
The genome sizes of 8 species of amphipods collected from the Canadian Arctic were estimated by flow cytometry. Haploid genome sizes ranged from 2.94 +/- 0.04 pg DNA in Acanthostepheia malmgreni (Oedicerotidae) to 64.62 +/- 2.85 pg in Ampelisca macrocephala (Ampeliscidae). The value for Ampelisca macrocephala represents the largest crustacean genome size recorded to date (and also the largest within the Arthropoda) and indicates a 400-fold variation in genome size among crustaceans. The presence of such large genomes within a relatively small sample of Arctic amphipods is striking and highlights the need to further explore the relationships between genome size, development rates, and body size in both Arctic and temperate amphipods.  相似文献   

4.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

5.
Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77–2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97–2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05–5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.  相似文献   

6.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

7.
The present communication deals with 2C nuclear genome size variation in a fairly small genus Guizotia. Twenty-four accessions belonging to six species, out of seven known, were analysed in order to elucidate the extent of DNA variation both at an intra—as well as interspecific level. At the intraspecific level none of the species exhibited significant differences in their genome size. Between the species, the 2C DNA amounts ranged from 3.61 pg in G. reptans to 11.37 pg in G. zavattarii; over three-fold DNA variation is evident. Apparently these interspecific DNA differences have been achieved independent of the numerical chromosomal change(s), as all the Guizotias share a common chromosome number 2n=2x=30. The cultivated oilseed crop, G. abyssinica (7.57 pg), has accommodated nearly 78% extra DNA in its chromosome complement during the evolutionary time scale of its origin and domestication from the wild progenitor G. schimperi (4.25 pg). The extent of genomic DNA difference(s) between the species has been discussed in the light of their interrelationships and diversity.  相似文献   

8.
This study provides the first analysis of genome size diversity in Monogonont rotifers. Measurements were made using flow cytometry, with Drosophila melanogaster and chicken erythrocytes as internal standards. Nuclear DNA content (??2C????assuming diploid genomes) in eight different species of four different genera ranged almost fourfold, from 0.12 to 0.46 pg. A comparison with previously published values for Bdelloid rotifers suggested that the genomes of Monogononts are significantly smaller than those of Bdelloids. When compared to other Metazoans, Monogonont rotifers seem to have relatively small genomes. For instance, the C-values of the two species with the smallest genomes, Brachionus dimidiatus and Synchaeta pectinata, were only 0.06 and 0.085 pg, respectively. Various explanations for genome size diversity within Monogononta are discussed.  相似文献   

9.
Most angiosperms possess small genomes (mode 1C = 0.6 pg, median 1C = 2.9 pg). Those with truly enormous genomes (i.e. > or = 35 pg) are phylogenetically restricted to a few families and include Liliaceae - with species possessing some of the largest genomes so far reported for any plant as well as including species with much smaller genomes. To gain insights into when and where genome size expansion took place during the evolution of Liliaceae and the mode and tempo of this change, data for 78 species were superimposed onto a phylogenetic tree and analysed. Results suggest that genome size in Liliaceae followed a punctuated rather than gradual mode of evolution and that most of the diversification evolved recently rather than early in the evolution of the family. We consider that the large genome sizes of Liliaceae may have emerged passively rather than being driven primarily by selection.  相似文献   

10.
K P Singh  S N Raina  A K Singh 《Génome》1996,39(5):890-897
The 2C nuclear DNA amounts were determined for 99 accessions, representing 23 Arachis species from 8 of 9 taxonomic sections, and two synthetic amphidiploids. Mean 2C DNA amounts varied by 15.20%, ranging from 10.26 to 11.82 pg, between accessions of Arachis hypogaea (2n = 4x = 40). Nuclear DNA content variation (5.33-5.91 pg) was also detected among Arachis duranensis (2n = 2x = 20) accessions. The intraspecific variation in the two species may have resulted from indirect selection for favourable genome sizes in particular environmental conditions. The accessions belonging to A. hypogaea ssp. hypogaea (mean value 11.27 pg) with longer life cycle had significantly larger mean DNA content than the accessions of A. hypogaea ssp. fastigiata (mean value 10.97 pg). For 20 diploid (2n = 2x = 20) species of the genus, 2C nuclear DNA amounts ranged from approximately 3 to 7 pg. The diploid perennial species of section Arachis have about 12% more DNA than the annual species. Comparisons of DNA amounts show that evolutionary rating is not a reliable guide to DNA amounts in generic sections of the genus; lower DNA values with evolutionary advancement were found in sections Heteranthae and Triseminatae, but the same was not true for sections Arachis and Caulorrhizae. Similarly, there is evidence of significant differences in DNA content between 4 ancient sections (Procumbentes, Erectoides, Rhizomatosae, and Extranervosae) of the genus. The occurrence of genome size plasticity in both A. duranensis and A. hypogaea provides evidence that A. duranensis could be one of the diploid progenitors of A. hypogaea. The DNA content in the two synthetic amphidiploids corresponded to the sum value estimated for parental species. Key words : Arachis species, genome size, Arachis hypogaea, Arachis duranensis, intraspecific variation.  相似文献   

11.
Genome size variation in plants is thought to be correlatedwith cytological, physiological, or ecological characters. However,conclusions drawn in several studies were often contradictory.To analyze nuclear genome size evolution in a phylogenetic framework,DNA contents of 134 accessions, representing all but one speciesof the barley genus Hordeum L., were measured by flow cytometry.The 2C DNA contents were in a range from 6.85 to 10.67 pg indiploids (2n = 14) and reached up to 29.85 pg in hexaploid species(2n = 42). The smallest genomes were found in taxa from theNew World, which became secondarily annual, whereas the largestdiploid genomes occur in Eurasian annuals. Genome sizes of polyploidtaxa equaled mostly the added sizes of their proposed progenitorsor were slightly (1% to 5%) smaller. The analysis of ancestralgenome sizes on the base of the phylogeny of the genus revealedlineages with decreasing and with increasing genome sizes. Correlationsof intraspecific genome size variation with the length of vegetationperiod were found in H. marinum populations from Western Europebut were not significant within two species from South America.On a higher taxonomical level (i.e., for species groups or theentire genus), environmental correlations were absent. Thiscould mostly be attributed to the superimposition of life-formchanges and phylogenetic constraints, which conceal ecogeographicalcorrelations.  相似文献   

12.
The suborder Ixodida includes many tick species of medical and veterinary importance, but little is known about the genomic characteristics of these ticks. We report the first study to determine genome size in two species of Argasidae (soft ticks) and seven species of Ixodidae (hard ticks) using flow cytometry analysis of fluorescent stained nuclei. Our results indicate a large haploid genome size (1C>1000 Mbp) for all Ixodida with a mean of 1281 Mbp (1.31+/-0.07 pg) for the Argasidae and 2671 Mbp (2.73+/-0.04 pg) for the Ixodidae. The haploid genome size of Ixodes scapularis was determined to be 2262 Mbp. We observed inter- and intra-familial variation in genome size as well as variation between strains of the same species. We explore the implications of these results for tick genome evolution and tick genomics research.  相似文献   

13.
One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.  相似文献   

14.
Cytological aspects of hemiclonal (meroclonal) inheritance in diploid and triploid males of the hybridogenetic frog Rana esculenta (Rana ridibunda x Rana lessonae) have been studied by DNA flow cytometry. The fact that the R. ridibunda genome contains 16% more DNA than the R. lessonae genome provides the ability to discern cells containing genomes of any species from the water-frog complex under study. Data are presented showing that elimination of the R. ridibunda genome occurs in hybridogenetic males from certain populations. In triploid males, the cytogenetic mechanism of hemiclonal inheritance is simpler than in diploids: after the elimination of a genome (always the genome in the minority in the triploid set; "homogenizing elimination"), no compensatory duplication of the remaining genetic material is necessary, as it is in diploids. The process of elimination can be visualized in triploid males by using DNA flow cytometry to identify cells in the special phase of the spermatogonial cell cycle that we termed the E phase.  相似文献   

15.
The Ulmaceae family is composed of nearly 2000 species widely distributed in the northern hemisphere. Despite their wide distribution area, there are only four native species in the Iberian Peninsula. In this work the genome size of three of those species (ULMUS MINOR, U. GLABRA, and CELTIS AUSTRALIS) was estimated using flow cytometry. The nuclear DNA content of C. AUSTRALIS was estimated as 2.46 +/- 0.061 pg/2C, of U. MINOR as 4.25 +/- 0.158 pg/2C, and of U. GLABRA as 4.37 +/- 0.103 pg/2C of DNA. No statistically significant differences were detected among individuals of the same species. These species revealed to be problematic for flow cytometric analyses, due to the release of mucilaginous compounds into the nuclear suspension. Despite that, the modified protocol here presented ensured high quality analyses (low coefficient of variation and background debris and nuclear fluorescence stability), opening good perspectives on its application to estimate the genome size of species with similar problems.  相似文献   

16.
The subgenus Ceratochloa of the genus Bromus includes a number of closely related allopolyploid forms or species that present a difficult taxonomic problem. The present work combines data concerning chromosome length, heterochromatin distribution and nuclear genome size of different 6x, 8x and 12x accessions in this subgenus. Special attention is paid to the karyotype structure and genomic constitution of duodecaploid plants recently found in South America. Hexaploid lineages possess six almost indistinguishable genomes and a nuclear DNA content between 12.72 pg and 15.10 pg (mean 1Cx value = 2.32 pg), whereas octoploid lineages contain the same six genomes (AABBCC) plus two that are characterized by longer chromosomes and a greater DNA content (1Cx = 4.47 pg). Two duodecaploid accessions found in South America resemble each other and apparently differ from the North American duodecaploid B. arizonicus as regards chromosome size and nuclear DNA content (40.00 and 40.50 pg vs. 27.59 pg). These observations suggest that the South American duodecaploids represent a separate evolutionary lineage of the B. subgenus Ceratochloa, unrecognized heretofore.  相似文献   

17.
Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. In the present study, the genome size of 61 accessions corresponding to 11 genera and 50 species of Vitaceae and Leeaceae is determined using flow cytometry. Phylogenetically based statistical analyses were used to infer ancestral character reconstructions of nuclear DNA contents. The DNA 1C‐values of 38 species are reported for the first time, with the largest genome (Cyphostemma humile (N. E. Br.) Desc. ex Wild & R. B. Drumm, 1C = 3.25 pg) roughly 10.48‐fold larger than the smallest (Vitis vulpina L., 1C = 0.31 pg). The large genomes are restricted to the tribe Cayratieae, and most other extant species in the family possess relatively small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor for the family had a relatively small genome (1C = 0.85 pg). Genome evolution in Vitaceae has been characterized by a trend towards genome size reduction, with just one episode of apparent DNA accumulation in the Cayratieae lineage. Such contrasting patterns of genome size evolution probably resulted from transposable elements and chromosome rearrangements, while neopolyploidization seems to contribute to recent genome increase in some species at the tips in the family tree.  相似文献   

18.
Genome size variation in parrots: longevity and flying ability   总被引:1,自引:0,他引:1  
Several hypotheses have been proposed to explain genome size variation in birds. However, no general consensus has been reached thus far. In this study, we analysed the inter- and intraspecific variation of genome size in some parrot species, and we tested the hypotheses that (1) weaker fliers have larger genomes, and (2) long-living species have lower DNA content. In general, parrots have a mean genome size (2.93 pg/nucleus) comparable to that of other avian orders. Amazona ochrocephala tresmariae has the highest genome size (4.30 pg/nucleus) among parrots. As expected, weaker flyers have larger genomes than better ones. In contrast to our prediction, we found a positive correlation between genome size and longevity. Finally, the species-group Amazona has a higher DNA content than the two groups Ara and Cacatua . Since oxidative stress is causally related to longevity, we suggest that DNA oxidative damage could have acted to some extent as a constraint on GS variation in parrots and perhaps also in other avian orders.  相似文献   

19.
1. Intraspecific variation in diet can be an important component of a species niche breadth. We tested the hypothesis that sex differences in seasonal foraging behaviour and energy storage of sexually size dimorphic grey seals Halichoerus grypus (Fabrisius 1971) are reflected in differences in the diet and niche breadth. Diet composition was estimated for 496 adult (226 males, 270 females) and 91 juvenile (46 males/45 females; all 6 months old) grey seals sampled between 1993 and 2000 using quantitative fatty acid signature analysis. Niche breadth and overlap were estimated using the Shannon-Weaver diversity index (H') and the Morisita-Horn index (C(H)), respectively. 2. Sand lance Ammodytes dubius (Reinhardt 1837) and redfish Sebastes sp. (Cuvier 1829) accounted for a high proportion of the diet in both sexes and age groups. However, the diets of adult males were significantly more diverse across all seasons (H': males 0.36 +/- 0.007 vs. females 0.28 +/- 0.007) and less energy dense in spring (male 5.3 +/- 0.07 kJ g(-1) vs. females 5.6 +/- 0.09 kJ g(-1)) than those of adult females. 3. Season and sex explained most of the observed variation in adult diets, but there were significant sex-season interactions. These differences were most evident during the post-breeding (spring) foraging period when energy acquisition is important to female recovery of nutrient stores needed to support pregnancy. Females selected fewer and higher quality prey species in spring than males. 4. There were no sex differences in the diets of juvenile grey seals. Although many of the species overlapped with those eaten by adults, juvenile niche breadth (H': 0.41 +/- 0.014, n = 91) was significantly broader than that of adults (H': 0.30 +/- 0.011, n = 115). Juvenile diets were also of lower energy density (5.3 +/- 0.04 kJ g(-1)) than those of adults (5.6 +/- 0.09 kJ g(-1)), suggesting less selectivity in these young and relatively na?ve predators. 5. Sex-specific seasonal changes in diet correspond to seasonal changes in diving behaviour and rate of body energy accumulation of adult males and females. Sex-specific reproductive requirements appear to be a primary factor generating the intraspecific variation in the seasonal foraging ecology of this large marine carnivore. However, sex differences in the breadth and energy content of diets also suggest the influence of body-size dimorphism as a factor shaping the diet of this species.  相似文献   

20.
Topical literature and Web site databases provide genome sizes for approximately 4,000 animal species, invertebrates and vertebrates, 330 of which are mammals. We provide the genome size for 67 mammalian species, including 51 never reported before. Knowledge of genome size facilitates sequencing projects. The data presented here encompassed 5 Metatheria (order Didelphimorphia) and 62 Eutheria: 15 Xenarthra, 24 Euarchontoglires (Rodentia), as well as 23 Laurasiatheria (22 Chiroptera and 1 species from Perissodactyla). Already available karyotypes supplement the haploid nuclear DNA contents of the respective species. Thus, we established the first comprehensive set of genome size measurements for 15 Xenarthra species (armadillos) and for 12 house-mouse species; each group was previously represented by only one species. The Xenarthra exhibited much larger genomes than the modal 3 pg DNA known for mammals. Within the genus Mus, genome sizes varied between 2.98 pg and 3.68 pg. The 22 bat species we measured support the low 2.63 pg modal value for Chiroptera. In general, the genomes of Euarchontoglires and Laurasiatheria were found being smaller than those of (Afrotheria and) Xenarthra. Interspecific variation in genome sizes is discussed with particular attention to repetitive elements, which probably promoted the adaptation of extant mammals to their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号